電視傳媒為了解某市100萬觀眾對(duì)足球節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾每周平均收看足球節(jié)目時(shí)間的頻率分布直方圖,將每周平均收看足球節(jié)目時(shí)間不低于1.5小時(shí)的觀眾稱為“足球迷”, 并將其中每周平均收看足球節(jié)目時(shí)間不低于2.5小時(shí)的觀眾稱為“鐵桿足球迷”.
(1)試估算該市“足球迷”的人數(shù),并指出其中“鐵桿足球迷”約為多少人;
(2)該市要舉辦一場(chǎng)足球比賽,已知該市的足球場(chǎng)可容納10萬名觀眾.根據(jù)調(diào)查,如果票價(jià)定為100元/張,則非“足球迷”均不會(huì)到現(xiàn)場(chǎng)觀看,而“足球迷”均愿意前往現(xiàn)場(chǎng)觀看.如果票價(jià)提高元/張,則“足球迷”中非“鐵桿足球迷”愿意前往觀看的人數(shù)會(huì)減少,“鐵桿足球迷”愿意前往觀看的人數(shù)會(huì)減少.問票價(jià)至少定為多少元/張時(shí),才能使前往現(xiàn)場(chǎng)觀看足球比賽的人數(shù)不超過10萬人?
(1)16萬“足球迷”, 3萬“鐵桿足球迷”,(2)140元/張
解析試題分析:(1)利用頻數(shù)等于頻率乘以總數(shù),樣本中“足球迷”出現(xiàn)的頻率=“足球迷”的人數(shù)=,同理可求:“鐵桿足球迷”=,(2)如果票價(jià)定為100元/張,則非“足球迷”均不會(huì)到現(xiàn)場(chǎng)觀看,而“足球迷”均愿意前往現(xiàn)場(chǎng)觀看,現(xiàn)場(chǎng)觀看足球比賽的人數(shù)超過10萬人,所以設(shè)票價(jià)為元,則一般“足球迷”中約有萬人,“鐵桿足球迷”約有萬人去現(xiàn)場(chǎng)看球. 由得由,即平均票價(jià)至少定為100+40=140元,才能使前往現(xiàn)場(chǎng)觀看足球比賽的“足球迷”不超過10萬人.
(1)樣本中“足球迷”出現(xiàn)的頻率= (2分)
“足球迷”的人數(shù)=(萬) (2分)
“鐵桿足球迷”=(萬)
所以16萬“足球迷”中,“鐵桿足球迷”約有3萬人. (6分)
(2)設(shè)票價(jià)為元,則一般“足球迷”中約有萬人,“鐵桿足球迷”約有萬人去現(xiàn)場(chǎng)看球. (3分)
令 (5分)
化簡(jiǎn)得:
解得:,由, (7分)
即平均票價(jià)至少定為100+40=140元,才能使前往現(xiàn)場(chǎng)觀看足球比賽的“足球迷”不超過10萬人. (8分)
考點(diǎn):頻率分布直方圖
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
對(duì)某校小學(xué)生進(jìn)行心理障礙測(cè)試得到如下的列聯(lián)表:
| 有心理障礙 | 沒有心理障礙 | 總計(jì) |
女生 | 10 | | 30 |
男生 | | 70 | 80 |
總計(jì) | 20 | | 110 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量表得如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取500件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下圖頻率分布直方圖:
(I)求這500件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均值和樣本方差(同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(II)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.
(i)利用該正態(tài)分布,求;
(ii)某用戶從該企業(yè)購買了100件這種產(chǎn)品,記表示這100件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間的產(chǎn)品件數(shù).利用(i)的結(jié)果,求.
附:
若則,。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)本班人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
| 喜愛打籃球 | 不喜愛打籃球 | 合計(jì) |
男生 | | 5 | |
女生 | 10 | | |
合計(jì) | | | 50 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲乙兩個(gè)班級(jí)均為40人,進(jìn)行一門考試后,按學(xué)生考試成績(jī)及格與不及格進(jìn)行統(tǒng)計(jì),甲班及格人數(shù)為36人,乙班及格人數(shù)為24人.
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)的列聯(lián)表;(2)試判斷成績(jī)與班級(jí)是否有關(guān)?
參考公式:;
P(K2>k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為調(diào)查民營(yíng)企業(yè)的經(jīng)營(yíng)狀況,某統(tǒng)計(jì)機(jī)構(gòu)用分層抽樣的方法從A、B、C三個(gè)城市中,抽取若干個(gè)民營(yíng)企業(yè)組成樣本進(jìn)行深入研究,有關(guān)數(shù)據(jù)見下表:(單位:個(gè))
城市 | 民營(yíng)企業(yè)數(shù)量 | 抽取數(shù)量 |
A | 4 | |
B | 28 | |
C | 84 | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某校為了解高一期末數(shù)學(xué)考試的情況,從高一的所有學(xué)生數(shù)學(xué)試卷中隨機(jī)抽取份試卷進(jìn)行成績(jī)分析,得到數(shù)學(xué)成績(jī)頻率分布直方圖(如圖所示),其中成績(jī)?cè)?img src="http://thumb.zyjl.cn/pic5/tikupic/5b/3/rlz942.png" style="vertical-align:middle;" />的學(xué)生人數(shù)為6.
(1)估計(jì)所抽取的數(shù)學(xué)成績(jī)的眾數(shù);
(2)用分層抽樣的方法在成績(jī)?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/3c/a/twlzp1.png" style="vertical-align:middle;" />和這兩組中共抽取5個(gè)學(xué)生,并從這5個(gè)學(xué)生中任取2人進(jìn)行點(diǎn)評(píng),求分?jǐn)?shù)在恰有1人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某校高三年級(jí)一次數(shù)學(xué)考試后,為了解學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,隨機(jī)抽取名學(xué)生的數(shù)學(xué)成績(jī),制成表所示的頻率分布表.
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第一組 | |||
第二組 | |||
第三組 | |||
第四組 | |||
第五組 | |||
合計(jì) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com