在△ABC中,若sinA+cosA=
1
5
,則tanA=( 。
A、
3
4
B、
4
3
C、-
3
4
D、-
4
3
考點(diǎn):三角函數(shù)的化簡求值,同角三角函數(shù)間的基本關(guān)系
專題:三角函數(shù)的求值
分析:首先根據(jù)sinA+cosA=
1
5
,利用恒等關(guān)系式解得:sinAcosA=-
12
25
,進(jìn)一步建立方程組解得結(jié)果.
解答: 解:在△ABC中,若sinA+cosA=
1
5
,①
所以:整理得:1+2sinAcosA=
1
25
,
即:sinAcosA=-
12
25
②,
sinA>0,cosA<0,
由①②得:tanA=-
4
3

故選:D.
點(diǎn)評:本題考查的知識要點(diǎn):同角三角函數(shù)的恒等變形,恒等關(guān)系式的變換的應(yīng)用.屬于基礎(chǔ)題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為奇函數(shù),當(dāng)x≥0時(shí),f(x)=
x
.g(x)=
f(x),x≥0
f(-x),x<0

(1)求當(dāng)x<0時(shí),函數(shù)f(x)的解析式,并在給定直角坐標(biāo)系內(nèi)畫出f(x)在區(qū)間[-5,5]上的圖象;(不用列表描點(diǎn))
(2)根據(jù)已知條件直接寫出g(x)的解析式,并說明g(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A=N*,B={x|x是正奇數(shù)},映射f:A→B使A中任一元素a與B中元素2a-1相對應(yīng),則與B中元素17對應(yīng)的A中元素為( 。
A、17B、9C、5D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在實(shí)數(shù)集R上的函數(shù),且滿足f(x+2)=-
1
f(x)
,f(1)=-
1
8
,則f(2015)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=loga(x+b)(a>0且a≠1)的圖象經(jīng)過兩點(diǎn)A(-1,0)、B(0,1),則a+b的值是(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將兩個(gè)數(shù)A=6,B=5交換,使A=5,B=6,使用賦值語句正確的一組( 。
A、C=B,B=A,A=C
B、A=B,B=A
C、B=A,A=B
D、A=C,C=B,B=A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
ln(x-2)
的定義域?yàn)?div id="zhjlf5v" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:2x-y+1=0與曲線C:y=mx2
(1)若只有一個(gè)交點(diǎn),求實(shí)數(shù)m的值;
(2)若直線l與曲線C相交于A、B兩點(diǎn),且|AB|=2
10
,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,若a2=1,a5=a3+2a1,則a3=
 

查看答案和解析>>

同步練習(xí)冊答案