(本小題14分)四棱錐中,底面為矩形,側(cè)面底面,.
(I)取的中點(diǎn)為,的中點(diǎn)為,證明:FG∥面;
(II)證明:.
解答
(I)證明:取AB中點(diǎn)H,連接GH,CH
因?yàn)镚是AE中點(diǎn),所以HG∥=BE,又因?yàn)榫匦蜝CDE,所以BE∥=CD,且F是CD中點(diǎn),
所以HG∥=CF,所以四邊形FGHC是平行四邊形,所以FG∥CH,………………………………4分
又因?yàn)镕G平面ABC,CH平面ABC,所以FG∥面;………………………………7分
(II)取BC中點(diǎn)Q,連接AQ,DQ
因?yàn)锳C=AB,所以AQ⊥BC,
因?yàn)閭?cè)面底面,AQ平面ABC,平面ABC∩平面=BC,
所以AQ⊥平面BCDE,……………………………………………………………………………………8分
因?yàn)镃E平面BCD ,所以 CE⊥AQ……………………………………………………………9分
又在矩形BCDE中,,BE=,CQ=1, 所以
所以Rt△CDQ∽R(shí)t△BCE,所以∠DQC=∠CEB, ………………………………………………10分
所以∠DQC+∠BCE=∠CEB+∠BCE=90o ,所以CE⊥BQ…………………………12分(其他方法參照給分)
因?yàn)锳Q∩BQ=Q,所以CE⊥平面ADQ,………………………………………………13分
AD平面ADQ,所以………………………………………………………………14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題共14分)
如圖,四棱錐的底面是正方形,,點(diǎn)E在棱PB上。
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)且E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省肇慶市高三數(shù)學(xué)復(fù)習(xí)必修2立體幾何部分試卷 題型:解答題
(本小題14分)已知四棱錐P-ABCD,底面ABCD是、邊長(zhǎng)為的菱形,又,且PD=CD,點(diǎn)M、N分別是棱AD、PC的中點(diǎn).
(1)證明:DN//平面PMB;
(2)證明:平面PMB平面PAD;
(3)求點(diǎn)A到平面PMB的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆廣東省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:解答題
(本小題14分)如圖所示,在四棱錐中,底面為矩形,側(cè)棱底面,為的中點(diǎn).
(1)求直線與所成角的余弦值;
(2)在側(cè)面內(nèi)找一點(diǎn),使平面,并分別求出點(diǎn)到和的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:北京市西城區(qū)2010年高三一模數(shù)學(xué)(理)試題 題型:解答題
(本小題滿分14分)
在四棱錐中,側(cè)面底面,,為中點(diǎn),底面是直角梯形,,=90°,,。
(I)求證:平面;
(II)求證:平面;
(III)設(shè)為側(cè)棱上一點(diǎn),,試確定的值,使得二面角為45°。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年廣東省高考沖刺強(qiáng)化訓(xùn)練試卷三文科數(shù)學(xué) 題型:解答題
(本小題滿分14分)如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點(diǎn),作交PB于點(diǎn)F.
(I) 證明: PA∥平面EDB;
(II) 證明:PB⊥平面EFD;
(III) 求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com