已知,是x,y軸正方向的單位向量,設(shè)=(x-),=(x+),且滿足

(1)求點(diǎn)P(x,y)的軌跡方程;

(2)過點(diǎn)(,0)的直線l交上述軌跡于A,B兩點(diǎn),且|AB|=,求直線l的方程.

答案:
解析:

  解:(1),2分

  ∴,5分

  化簡得,8分

  (2)設(shè),由--10分

  設(shè)、

  ----12分

  ,14分

  所以直線的方程為.16分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
i
,
j
是x,y軸正方向的單位向量,設(shè)
a
=(x-
3
)
i
+y
j
b
=(x+
3
)
i
+y
j
,且滿足
b
i
=|
a
|

(1)求點(diǎn)P(x,y)的軌跡方程;
(2)過點(diǎn)(
3
,0)
的直線l交上述軌跡于A,B兩點(diǎn),且|AB|=8
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i,j是x,y軸正方向上的單位向量,設(shè)a=(x-
3
)i+yj,b=(x+
3
)i+yj,,且滿足|a|+|b|=4.
(1)求點(diǎn)P(x,y)的軌跡C的方程;
(2)如果過點(diǎn)Q(0,m)且方向向量為c=(1,1)的直線l與點(diǎn)P的軌跡交于A,B兩點(diǎn),當(dāng)△AOB的面積取到最大值時(shí),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
i
,
j
是x,y軸正方向的單位向量,設(shè)
a
=(x+2)
i
+y
j
,
b
=(x-2)
i
+y
j
,且滿足|
a
|-|
b
|=2

(1)求點(diǎn)P(x,y)的軌跡E的方程.
(2)若直線l過點(diǎn)F2(2,0)且法向量為
n
=(t,1),直線與軌跡E交于P、Q兩點(diǎn).點(diǎn)M(-1,0),無論直線l繞點(diǎn)F2怎樣轉(zhuǎn)動(dòng),
MP
MQ
是否為定值?如果是,求出定值;如果不是,請(qǐng)說明理由.并求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江西模擬)已知
i
,
j
是x,y軸正方向的單位向量,設(shè)
a
=x
i
+(y-1)
j
b
=x
i
+(y+1)
j
,且滿足|
a
|+|
b
|=2
2

(1)求點(diǎn)P(x,y)的軌跡C的方程;
(2)設(shè)點(diǎn)F(0,1),點(diǎn)A、B、C、D在曲線C上,若
AF
FB
共線,
CF
FD
共線,且
AF
CF
=0
,求四邊形ACBD的面積的最小值和最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案