(2013•遼寧)(選修4-1幾何證明選講)
如圖,AB為⊙O的直徑,直線CD與⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直于AB于F,連接AE,BE,證明:
(1)∠FEB=∠CEB;
(2)EF2=AD•BC.
分析:(1)直線CD與⊙O相切于E,利用弦切角定理可得∠CEB=∠EAB.由AB為⊙O的直徑,可得∠AEB=90°.又EF⊥AB,利用互余角的關(guān)系可得∠FEB=∠EAB,從而得證.
(2)利用(1)的結(jié)論及∠ECB=90°=∠EFB和EB公用可得△CEB≌△FEB,于是CB=FB.同理可得△ADE≌△AFE,AD=AF.在Rt△AEB中,由EF⊥AB,利用射影定理可得EF2=AF•FB.等量代換即可.
解答:證明:(1)∵直線CD與⊙O相切于E,∴∠CEB=∠EAB.
∵AB為⊙O的直徑,∴∠AEB=90°.
∴∠EAB+∠EBA=90°.
∵EF⊥AB,∴∠FEB+∠EBF=90°.
∴∠FEB=∠EAB.
∴∠CEB=∠EAB.
(2)∵BC⊥CD,∴∠ECB=90°=∠EFB,
又∠CEB=∠FEB,EB公用.
∴△CEB≌△FEB.
∴CB=FB.
同理可得△ADE≌△AFE,∴AD=AF.
在Rt△AEB中,∵EF⊥AB,∴EF2=AF•FB.
∴EF2=AD•CB.
點(diǎn)評(píng):熟練掌握弦切角定理、直角三角形的互為余角的關(guān)系、三角形全等的判定與性質(zhì)、射影定理等是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•遼寧)在△ABC,內(nèi)角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c.asinBcosC+csinBcosA=
1
2
b
,且a>b,則∠B=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•遼寧一模)已知:函數(shù)f(x)=-x3+mx在(0,1)上是增函數(shù).
(1)求實(shí)數(shù)m的取值的集合A;
(2)當(dāng)m取集合A中的最小值時(shí),定義數(shù)列{an}:滿(mǎn)足a1=3,且an>0,an+1=
-3f(an)+9
-2
,求數(shù)列{an}的通項(xiàng)公式
(3)若bn=nan數(shù)列{bn}的前n項(xiàng)和為Sn,求證:Sn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•遼寧一模)已知直線l是過(guò)點(diǎn)P(-1,2),方向向量為
n
=(-1,
3
)
的直線,圓方程ρ=2cos(θ+
π
3
)

(1)求直線l的參數(shù)方程
(2)設(shè)直線l與圓相交于M,N兩點(diǎn),求|PM|•|PN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•遼寧)某學(xué)校組織學(xué)生參加英語(yǔ)測(cè)試,成績(jī)的頻率分布直方圖如圖,數(shù)據(jù)的分組一次為[20,40),[40,60),[60,80),[80,100).若低于60分的人數(shù)是15人,則該班的學(xué)生人數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•遼寧)已知集合A={0,1,2,3,4},B={x||x|<2},則A∩B=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案