【題目】已知函數(shù),).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),,求k的取值范圍.

【答案】(1)詳見解析(2)

【解析】

(1)將函數(shù)求導(dǎo)并化簡,對分成兩種情況,討論函數(shù)的單調(diào)性.(2)原不等式即),當(dāng)時(shí),上述不等式顯然成立.當(dāng)時(shí),將不等式變?yōu)?/span>,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,由此求得的取值范圍.

解:(1)

①若,當(dāng)時(shí),,上單調(diào)遞增;

當(dāng)時(shí),,上單調(diào)遞減.

②若,當(dāng)時(shí),,上單調(diào)遞減;

當(dāng)時(shí),上單調(diào)遞增.

∴當(dāng)時(shí),上單調(diào)遞增,在上單調(diào)遞減;

當(dāng)時(shí),上單調(diào)遞減,在上單調(diào)遞增.

(2)),

當(dāng)時(shí),上不等式成立,滿足題設(shè)條件;

當(dāng)時(shí),,等價(jià)于,

設(shè),則 ,

設(shè)),則,

上單調(diào)遞減,得

①當(dāng),即時(shí),得,,

上單調(diào)遞減,得,滿足題設(shè)條件;

②當(dāng),即時(shí),,而,

,,又單調(diào)遞減,

∴當(dāng),得

上單調(diào)遞增,得,不滿足題設(shè)條件;

綜上所述,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,且PC=BC=2AD=2CD=2,.

(1)平面;

(2)已知點(diǎn)在線段上,且,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下四個(gè)說法:

①回歸直線可以不過樣本的中心點(diǎn);

②在刻畫回歸模型的擬合效果時(shí),相關(guān)指數(shù)的值越大,說明擬合的效果越好;

③在回歸直線方程中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均增加0.2個(gè)單位;

④對分類變量XY,若它們的隨機(jī)變量的觀測值k越小,則判斷XY有關(guān)系的把握程度越大.

其中正確的說法是(

A.①④B.②③C.①③D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019923日,在市舉辦的2019年中國農(nóng)民豐收節(jié)“新電商與農(nóng)業(yè)科技創(chuàng)新”論壇上,來自政府相關(guān)部門的領(lǐng)導(dǎo)及11所中國高校的專家學(xué)者以“農(nóng)業(yè)科技創(chuàng)新與鄉(xiāng)村振興”、“新農(nóng)人與脫貧攻堅(jiān)”為核心議題各抒己見,農(nóng)產(chǎn)品方面的科技創(chuàng)新越來越成為21世紀(jì)大國崛起的一項(xiàng)重大突破.科學(xué)家對某農(nóng)產(chǎn)品每日平均增重量(單位:)與每日營養(yǎng)液注射量(單位:)之間的關(guān)系統(tǒng)計(jì)出表1一組數(shù)據(jù):

1

(單位:

1

2

3

4

5

(單位:

2

3.5

5

6.6

8.4

1)根據(jù)表1和表2的相關(guān)統(tǒng)計(jì)值求關(guān)于的線性回歸方程;

2)計(jì)算擬合指數(shù)的值,并說明線性回歸模型的擬合效果(的值在.98以上說明擬合程度好);

3)若某日該農(nóng)產(chǎn)品的營養(yǎng)液注釋量為,預(yù)測該日這種農(nóng)產(chǎn)品的平均增長重量(結(jié)果精確到0.1.

附:①

2

92.4

55

25

0.04

②對于一組數(shù)據(jù),,…,,其回歸線的斜率和截距的最小二乘估計(jì)分別為:,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地有三家工廠,分別位于矩形ABCD的頂點(diǎn)AB,及CD的中點(diǎn)P處,已知km,,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD的區(qū)域上(含邊界),且A,B與等距離的一點(diǎn)O處建造一個(gè)污水處理廠,并鋪設(shè)排污管道AO,BOOP,設(shè)排污管道的總長為ykm

I)按下列要求寫出函數(shù)關(guān)系式:

設(shè),將表示成的函數(shù)關(guān)系式;

設(shè),將表示成的函數(shù)關(guān)系式.

)請你選用(I)中的一個(gè)函數(shù)關(guān)系式,確定污水處理廠的位置,使三條排水管道總長度最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的參數(shù)方程為t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,過極點(diǎn)的兩射線相互垂直,與曲線C分別相交于AB兩點(diǎn)(不同于點(diǎn)O),且的傾斜角為銳角.

(1)求曲線C和射線的極坐標(biāo)方程;

(2)求△OAB的面積的最小值,并求此時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)遞減區(qū)間;

(2)求實(shí)數(shù)的值,使得是函數(shù)唯一的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若關(guān)于的方程恰有兩個(gè)不相等的實(shí)數(shù)根, 則實(shí)數(shù)的取值范圍是

A. B. , C. , D. ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的個(gè)數(shù)是( )

①設(shè)某大學(xué)的女生體重與身高具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù),用最小二乘法建立的線性回歸方程為 ,則若該大學(xué)某女生身高增加,則其體重約增加;

②關(guān)于的方程的兩根可分別作為橢圓和雙曲線的離心率;

③過定圓上一定點(diǎn)作圓的動弦,為原點(diǎn),若,則動點(diǎn)的軌跡為橢圓;

④已知是橢圓的左焦點(diǎn),設(shè)動點(diǎn)在橢圓上,若直線的斜率大于,則直線為原點(diǎn))的斜率的取值范圍是.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案