【題目】已知集合A={x| <2x<4},B={x|0<log2x<2}.
(1)求A∩B和A∪B;
(2)記M﹣N={x|x∈M,且xN},求A﹣B與B﹣A.
【答案】
(1)解:集合A={x| <2x<4}={x|﹣1<x<2},
B={x|0<log2x<2}={x|0<x<4};
A∩B={x|0<x<2},
A∪B={x|﹣1<x<4}
(2)解:記M﹣N={x|x∈M,且xN},
則A﹣B={x|﹣1<x≤0},
B﹣A={x|2≤x<4}
【解析】(1)化簡集合A、B,根據(jù)交集與并集的定義寫出A∩B和A∪B;(2)根據(jù)M﹣N的定義,寫出A﹣B與B﹣A即可.
【考點(diǎn)精析】本題主要考查了交、并、補(bǔ)集的混合運(yùn)算的相關(guān)知識點(diǎn),需要掌握求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知位于y軸左側(cè)的圓C與y軸相切于點(diǎn)(0,1)且被x軸分成的兩段圓弧長之比為1:2,過點(diǎn)H(0,t)的直線l于圓C相交于M、N兩點(diǎn),且以MN為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O.
(1)求圓C的方程;
(2)當(dāng)t=1時,求出直線l的方程;
(3)求直線OM的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分組的頻率分布直方圖如圖.
(1)求直方圖中x的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,[220,240),[240,260),[260,280),[280,300)的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某畢業(yè)生參加人才招聘會,分別向甲、乙、丙三個公司投遞了個人簡歷,假定該畢業(yè)生得到甲公司面試的概率為 ,得到乙公司和丙公司面試的概率均為p,且三個公司是否讓其面試是相互獨(dú)立的.記ξ為該畢業(yè)生得到面試的公司個數(shù),若P(ξ=0)=
(Ⅰ)求p的值:
(Ⅱ)求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線x2=4y,圓C:x2+(y﹣2)2=4,點(diǎn)M(x0 , y0),(x0>0,y0>4)為拋物線上的動點(diǎn),過點(diǎn)M的圓C的兩切線,設(shè)其斜率分別為k1 , k2
(Ⅰ)求證:k1+k2= ,k1k2= .
(Ⅱ)求過點(diǎn)M的圓的兩切線與x軸圍成的三角形面積S的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1(﹣1,0),F(xiàn)2(1,0)是橢圓C1與雙曲線C2共同的焦點(diǎn),橢圓的一個短軸端點(diǎn)為B,直線F1B與雙曲線的一條漸近線平行,橢圓C1與雙曲線C2的離心率分別為e1 , e2 , 則e1+e2取值范圍為( )
A.[2,+∞)
B.[4,+∞)
C.(4,+∞)
D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某樂園按時段收費(fèi),收費(fèi)標(biāo)準(zhǔn)為:每玩一次不超過1小時收費(fèi)10元,超過1小時的部分每小時收費(fèi)8元(不足1小時的部分按1小時計(jì)算).現(xiàn)有甲、乙二人參與但都不超過4小時,甲、乙二人在每個時段離場是等可能的.為吸引顧客,每個顧客可以參加一次抽獎活動.
(1)用(10,10)表示甲乙玩都不超過1小時的付費(fèi)情況,求甲、乙二人付費(fèi)之和為44元的概率;
(2)抽獎活動的規(guī)則是:顧客通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的均勻隨機(jī)數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該顧客中獎;若電腦顯示“謝謝”,則不中獎,求顧客中獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為 ,且經(jīng)過點(diǎn)A(0,﹣1).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)如果過點(diǎn) 的直線與橢圓交于M,N兩點(diǎn)(M,N點(diǎn)與A點(diǎn)不重合),求證:△AMN為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:函數(shù) (a、b、c是常數(shù))是奇函數(shù),且滿足 , (Ⅰ)求a、b、c的值;
(Ⅱ)試判斷函數(shù)f(x)在區(qū)間 上的單調(diào)性并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com