【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)圖象的一部分如圖所示,函數(shù)g(x)=f(x+ ),則下列結(jié)論正確的是(

A.函數(shù)g(x)的奇函數(shù)
B.函數(shù)f(x)與g(x)的圖象均關(guān)于直線x=﹣ π對(duì)稱
C.函數(shù)f(x)與g(x)的圖象均關(guān)于點(diǎn)(﹣ ,0)對(duì)稱
D.函數(shù)f(x)與g(x)在區(qū)間(﹣ ,0)上均單調(diào)遞增

【答案】D
【解析】解:根據(jù)函數(shù)f(x)的圖象知,A=2;
= = ,∴T=π,ω= =2;
+φ= ,φ= ;
∴f(x)=2sin(2x+ );
函數(shù)g(x)=f(x+ )=2sin[2(x+ )+ ]=2cos2x;
由此得函數(shù)g(x)不是定義域R上的奇函數(shù),A錯(cuò)誤;
由f(﹣ )=2sin(﹣ π+ )=2,函數(shù)f(x)關(guān)于x=﹣ 對(duì)稱,
g(﹣ )=2cos(﹣ )= ,函數(shù)g(x)不關(guān)于x=﹣ 對(duì)稱,B錯(cuò)誤;
由f(﹣ )=2sin(﹣ + )=﹣ ,函數(shù)不關(guān)于(﹣ ,0)對(duì)稱,C錯(cuò)誤;
由x∈(﹣ ,0),2x+ ∈(﹣ , ),函數(shù)f(x)=2sin(2x+ )是單調(diào)增函數(shù),
2x∈(﹣ ,0),g(x)=2cos2x是單調(diào)增函數(shù),D正確.
故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下數(shù)表的構(gòu)造思路源于我國南宋數(shù)學(xué)家楊輝所著的《詳解九章算術(shù)》一書中的“楊輝三角性”.

該表由若干行數(shù)字組成,從第二行起,每一行中的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后一行僅有一個(gè)數(shù),則這個(gè)數(shù)為(
A.2017×22015
B.2017×22014
C.2016×22015
D.2016×22014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人準(zhǔn)備報(bào)考某大學(xué),假設(shè)甲考上的概率為 ,甲,丙兩都考不上的概率為 ,乙,丙兩都考上的概率為 ,且三人能否考上相互獨(dú)立.
(1)求乙、丙兩人各自考上的概率;
(2)設(shè)X表示甲、乙、丙三人中考上的人數(shù)與沒考上的人數(shù)之差的絕對(duì)值,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖已知四棱錐P﹣ABCD的底面ABCD是邊長(zhǎng)為2的正方形,PD⊥底面ABCD,E,F(xiàn)分別為棱BC,AD的中點(diǎn).

(1)若PD=1,求異面直線PB和DE所成角的余弦值.
(2)若二面角P﹣BF﹣C的余弦值為 ,求四棱錐P﹣ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)、是函數(shù) 的兩個(gè)極值點(diǎn).

(1)若,求函數(shù)的解析式;

(2)若,求的最大值;

(3)設(shè)函數(shù),當(dāng)時(shí),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是等腰三角形ABC的外接圓,AB=AC,延長(zhǎng)BC到點(diǎn)D,使CD=AC,連接AD交⊙O于點(diǎn)E,連接BE與AC交于點(diǎn)F.

(1)判斷BE是否平分∠ABC,并說明理由;
(2)若AE=6,BE=8,求EF的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,過點(diǎn)作直線交圓兩點(diǎn),分別過兩點(diǎn)作圓的切線,當(dāng)兩條切線相交于點(diǎn)時(shí),則點(diǎn)的軌跡方程為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x3+ax在(﹣1,0)上是增函數(shù).
(1)求實(shí)數(shù)a的取值范圍A;
(2)當(dāng)a為A中最小值時(shí),定義數(shù)列{an}滿足:a1∈(﹣1,0),且2an+1=f(an),用數(shù)學(xué)歸納法證明an∈(﹣1,0),并判斷an+1與an的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為感謝全體員工的辛勤勞動(dòng),決定在年終答謝會(huì)上,通過摸球方式對(duì)全公司1000位員工進(jìn)行現(xiàn)金抽獎(jiǎng)。規(guī)定:每位員工從裝有4個(gè)相同質(zhì)地球的袋子中一次性隨機(jī)摸出2個(gè)球,這4個(gè)球上分別標(biāo)有數(shù)字、,摸出來的兩個(gè)球上的數(shù)字之和為該員工所獲的獎(jiǎng)勵(lì)額(單位:元)。公司擬定了以下三個(gè)數(shù)字方案:

方案

100

100

100

500

100

100

500

500

200

200

400

400

(Ⅰ)如果采取方案一,求的概率;

(Ⅱ)分別計(jì)算方案二、方案三的平均數(shù)和方差,如果要求員工所獲的獎(jiǎng)勵(lì)額相對(duì)均衡,方案二和方案三選擇哪個(gè)更好?

(Ⅲ)在投票選擇方案二還是方案三時(shí),公司按性別分層抽取100名員工進(jìn)行統(tǒng)計(jì),得到如下不完整的列聯(lián)表。請(qǐng)將該表補(bǔ)充完整,并判斷能否有90%的把握認(rèn)為“選擇方案二或方案三與性別有關(guān)”?

方案二

方案三

合計(jì)

男性

12

女性

40

合計(jì)

82

100

附:

0.15

0.10

0.05

2.072

2.706

3.841

查看答案和解析>>

同步練習(xí)冊(cè)答案