P是以為焦點(diǎn)的橢圓上的一點(diǎn),且,則此橢圓的離心率為(    )

A.             B.              C.              D.

 

【答案】

A

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以O(shè)為原點(diǎn),
OF
所在直線為x軸,建立直角坐標(biāo)系.設(shè)
OF
FG
=1
,點(diǎn)F的坐標(biāo)為(t,0),t∈[3,+∞).點(diǎn)G的坐標(biāo)為(x0,y0).
(1)求x0關(guān)于t的函數(shù)x0=f(t)的表達(dá)式,并判斷函數(shù)f(x)的單調(diào)性.
(2)設(shè)△OFG的面積S=
31
6
t
,若O以為中心,F(xiàn),為焦點(diǎn)的橢圓經(jīng)過點(diǎn)G,求當(dāng)|
OG
|
取最小值時橢圓的方程.
(3)在(2)的條件下,若點(diǎn)P的坐標(biāo)為(0,
9
2
)
,C,D是橢圓上的兩點(diǎn),
PC
PD
(λ≠1)
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:軸于AB兩點(diǎn),曲線C是以為長軸,離心率為的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連結(jié)PF,過原點(diǎn)O作直線PF的垂線交直線X=-2于點(diǎn)Q.

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓相切;

(Ⅲ)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P是以為焦點(diǎn)的橢圓上的點(diǎn),若面積為,則

A.-2                      B.2                       C.                   D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P是以為焦點(diǎn)的橢圓上的點(diǎn),若,則=

A.                   B.1                       C.            D.

查看答案和解析>>

同步練習(xí)冊答案