已知cosα=,求sinα、tanα的值.

解析:∵cosα<0,且cosα≠-1,

∴α是第二或第三象限角.

如果α是第二象限角,那么sinα=

tanα==×()=-.

如果α是第三象限角,那么sinα=-,tanα=.

答案:sinα=±,tanα=±.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)①證明兩角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;②由Cα+β推導(dǎo)兩角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知△ABC的面積S=
1
2
AB
AC
=3
,且cosB=
3
5
,求cosC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)①證明兩角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;
②由Cα+β推導(dǎo)兩角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知cosα=-
4
5
,α∈(π,
3
2
π),tanβ=-
1
3
,β∈(
π
2
,π),cos(α+β)
,求cos(α+β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的面積S滿足3≤S≤3
3
,且
AB
BC
=6,
AB
BC
的夾角為α.
(1)求α的取值范圍;
(2)若函數(shù)f(α)=sin2α+2sinαcosα+3cos2α,求f(α)的最小值,并指出取得最小值時(shí)的α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的面積S滿足
3
2
≤S≤
3
2
,且
AB
BC
=3
AB
BC
的夾角為θ.
(1)求θ的取值范圍;
(2)求函數(shù)f(θ)=3sin2θ+2
3
sinθ•cosθ+cos2θ
的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)證明兩角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;
(2)已知△ABC的面積S=
1
2
,
AB
AC
=3
,且cosB=
3
5
,求cosC.

查看答案和解析>>

同步練習(xí)冊(cè)答案