當(dāng)a,b < 0時(shí),函數(shù)y =在區(qū)間 ( 0 , + ∞)上的最大值是( )
(A) () 2 (B)(+) 2 (C) (D)年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
16.(2)解(1)當(dāng)a=1,b=-2時(shí),g(x)=f(x)-2,把f(x)圖象向下平移兩個(gè)單位就可得到g(x)圖象,
這時(shí)函數(shù)g(x)只有兩個(gè)零點(diǎn),所以(1)不對(duì)
(2)若a=-1,-2<b<0,則把函數(shù)f(x)作關(guān)于x軸對(duì)稱圖象,然后向下平移不超過2個(gè)單位就可得到g(x)圖象,這時(shí)g(x)有超過2的零點(diǎn)
(3)當(dāng)a<0時(shí), y=af(x)根據(jù)定義可斷定是奇函數(shù),如果b≠0,把奇函數(shù)y=af(x)圖象再向上(或向下)平移后才是y=g(x)=af(x)+b的圖象,那么肯定不會(huì)再關(guān)于原點(diǎn)對(duì)稱了,肯定不是奇函數(shù);當(dāng)b=0時(shí)才是奇函數(shù),所以(3)不對(duì)。所以正確的只有(2)
為了考察高中生學(xué)習(xí)語文與數(shù)學(xué)之間的關(guān)系,在某中學(xué)學(xué)生中隨機(jī)地抽取了610名學(xué)生得到如下列表:
語文 數(shù)學(xué) | 及格 | 不及格 | 總計(jì) |
及格 | 310 | 142 | 452 |
不及格 | 94 | 64 | 158 |
總計(jì) | 404 | 206 | 610 |
由表中數(shù)據(jù)計(jì)算及的觀測值問在多大程度上可以認(rèn)為高中生的語文與數(shù)學(xué)成績之間有關(guān)系?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在回歸分析中,通過模型由解釋變量計(jì)算預(yù)報(bào)變量時(shí),應(yīng)注意什么問題?
9 f(a)f(b)≤0解析:若根在開區(qū)間(a,b)上有f(a)f(b)<0;而當(dāng)根是端點(diǎn)a或b時(shí),f(a)f(b)=0,因此當(dāng)f(x)=0在區(qū)間[a,b]上有實(shí)根時(shí)f(a)f(b)≤0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆貴州省高一上學(xué)期期中數(shù)學(xué)試卷 題型:解答題
已知函數(shù)f (x)=lg(ax-bx)(a >1,0< b<1)
(1) 求f (x)的定義域;
(2) 此函數(shù)的圖象上是否存在兩點(diǎn),過這兩點(diǎn)的直線平行于x軸?
(3) 當(dāng)a、b滿足什么條件時(shí)f (x)恰在(1,+∞)取正值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆河北省高一12月月考數(shù)學(xué)試卷 題型:選擇題
已知函數(shù)f(x+1)是偶函數(shù),當(dāng)x2>x1>1時(shí),[f(x2)-f(x1)](x2-x1)>0恒成立,設(shè)a=f(-),b=f(2),c=f(3),則a,b,c的大小關(guān)系為( )
A.b<a<c B.c<b<a C.b<c<a D.a(chǎn)<b<c
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com