如圖所示,矩形中,⊥平面,上的點,且⊥平面.

(1)求證:⊥平面;
(2)求三棱錐的體積.
(1)只要證明 (2)

試題分析:解:(1)∵平面,,
平面,∴
又∵平面,∴
又∵,∴平面.

(2)由題意可得,的中點,連接,
平面,∴,又∵,
的中點,
∴在中,,
平面,∴平面.
中,
××=1,
.
點評:本題主要考查垂直關系,利用線面垂直的定義和判定定理,進行線線垂直與線面垂直
的轉(zhuǎn)化;求三棱錐體積常用的方法:換底法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知二面角a--l--b為600,動點P、Q分別在a、b內(nèi),P到b的距離為,Q到a的距離為2, 則PQ兩點之間距離的最小值為         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

下列命題中正確的是              .(填上你認為所有正確的選項)
①空間中三個平面,若,則;
②若為三條兩兩異面的直線,則存在無數(shù)條直線與都相交;
③球與棱長為正四面體各面都相切,則該球的表面積為;
④三棱錐中,.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知為不同的直線,為不同的平面,給出下列四個命題:
①若,則;              ②若,則
③若,則;  ④若,則.
其中所有正確命題的序號是(    )
A.①②B.②③C.①③D.①④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是空間的不同直線或不同平面,下列條件中能保證“若,且,則”為真命題的是 (    )
A.為直線, 為平面
B.為平面
C.為直線,z為平面
D.為直線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設m,n是兩條不同的直線,是三個不同的平 面,則下列為假命題的是 
A.若,則
B.若
C.若
D.若

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在長方體中,,與平面所成角的正弦值為 (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是兩條不同的直線,是兩個不同的平面,下列命題中正確的是(    )
A.若,,,則
B.若,,,則
C.若,,,則
D.若,,,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,若是長方體被平面截去幾何體后得到的幾何體,其中E為線段上異于的點,F(xiàn)為線段上異于的點,且,則下列結(jié)論中不正確的是(  )
A.B.四邊形是矩形
C.是棱臺D.是棱柱

查看答案和解析>>

同步練習冊答案