(Ⅰ)證明{bn}為等比數(shù)列;
(Ⅱ)如果無(wú)窮等比數(shù)列{bn}各項(xiàng)的和S=,求數(shù)列{an}的首項(xiàng)a1和公差d.
(注:無(wú)窮數(shù)列各項(xiàng)的和即當(dāng)n→∞時(shí)數(shù)列前n項(xiàng)和的極限)
(18)(Ⅰ)證明:
∵lga1、lga2、lga4成等差數(shù)列,
∴2lga2=lga1+lga4,即a2=a1·a4.
等差數(shù)列{an}的公差為d,則
(a1+d)2=a1(a1+3d),
這樣d2=a1d.
從而d(d-a1)=0.
(i)若d=0,則{an}為常數(shù)列,相應(yīng){bn}也是常數(shù)列.
此時(shí){bn}是首項(xiàng)為正數(shù),公式為1的等比數(shù)列.
(ii)若d=a1≠0,則
=a1+(2n-1)d=2nd,bn=.
這時(shí){bn}是首項(xiàng)b1=,公比為的等比數(shù)列.
綜上知,{bn}為等比數(shù)列.
(Ⅱ)解:
如果無(wú)窮等比數(shù)列{bn}的公比q=1,則當(dāng)n→∞時(shí)其前n項(xiàng)和的極限不存在.
因而d=a1≠0,這時(shí)公比q=,b1=.
這樣,{bn}的前n項(xiàng)和Sn=,
則S=Sn==.
由S=得公差d=3,首項(xiàng)a1=d=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com