(坐標(biāo)系與參數(shù)方程選做題) 若直線與曲線(ϕ為參數(shù),a>0)有兩個公共點(diǎn)A,B,且|AB|=2,則實數(shù)a的值為    ;在此條件下,以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸正方向為極軸建立坐標(biāo)系,則曲線C的極坐標(biāo)方程為   
【答案】分析:利用同角三角函數(shù)的基本關(guān)系消去參數(shù)∅,化為普通方程為 (x-a)2+y2=2 ①,求出圓心C到直線的距離d,由弦長公式求得實數(shù)a的值;把x=ρcosθ,y=ρsinθ代入①化簡可得
曲線C的極坐標(biāo)方程.
解答:解:由曲線(ϕ為參數(shù),a>0),可得cos∅=x-a,sin∅=y,
平方相加可得 (x-a)2+y2=2 ①,表示以C(a,0)為圓心,以為半徑的圓,
圓心C到直線的距離等于d==
再由弦長公式可得 =1==,解得a=2.
①即 (x-2)2+y2=2 ②,
把x=ρcosθ,y=ρsinθ代入②,化簡可得 ρ2-4ρcosθ+2=0,
故答案為 2,ρ2-4ρcosθ+2=0.
點(diǎn)評:本題主要考查把參數(shù)方程化為普通方程的方法,點(diǎn)到直線的距離公式,把直角坐標(biāo)方程化為極坐標(biāo)方程,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,單位長度一致的坐標(biāo)系下,已知曲線C1的參數(shù)方程為
x=2cosθ+3
y=2sinθ
(θ為參數(shù)),曲線C2的極坐標(biāo)方程為ρsinθ=a,則這兩曲線相切時實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(ρ>0,0≤θ<
π
2
)中,曲線ρ=2sinθ與ρ=2cosθ的交點(diǎn)的極坐標(biāo)為
2
,
π
4
2
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)
曲線
x=t
y=
1
3
t2
(t為參數(shù)且t>0)與直線ρsinθ=1(ρ∈R,0≤θ<π)交點(diǎn)M的極坐標(biāo)為
(2,
π
6
(2,
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)(坐標(biāo)系與參數(shù)方程選做題)已知在極坐標(biāo)系下,點(diǎn)A(1,
π
3
),B(3,
3
),O是極點(diǎn),則△AOB的面積等于
3
3
4
3
3
4
;
(2)(不等式選做題)關(guān)于x的不等式|
x+1
x-1
|>
x+1
x-1
的解集是
(-1,1)
(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,已知點(diǎn)P(2,
π3
),則過點(diǎn)P且平行于極軸的直線的極坐標(biāo)方程為
 

查看答案和解析>>

同步練習(xí)冊答案