已知O為△ABC所在平面內(nèi)一點,滿足,則點O是△ABC的( )
A.外心
B.內(nèi)心
C.垂心
D.重心
【答案】分析:根據(jù)向量的減法分別用表示,利用數(shù)量積運算和題意代入式子進行化簡,證出OC⊥AB,同理可得OB⊥AC,OA⊥BC,即證出O是△ABC的垂心.
解答:解:設(shè),,則,
由題可知,,
∴||2+||2=||2+||2,化簡可得=,即()•=0,
,∴,即OC⊥AB.
同理可得OB⊥AC,OA⊥BC.
∴O是△ABC的垂心.
故選C.
點評:本題考查了向量在幾何中應(yīng)用,主要利用向量的線性運算以及數(shù)量積進行化簡證明,特別證明垂直主要根據(jù)題意構(gòu)造向量利用數(shù)量積為零進行證明.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知O為△ABC所在平面內(nèi)一點,滿足|
OA
|2+|
BC
|2=|
OB
|2+|
CA
|2=|
OC
|2+|
AB
|2
,則點O是△ABC的( 。
A、外心B、內(nèi)心C、垂心D、重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為△ABC所在平面外一點,且
OA
=
a
OB
=
b
,
OC
=
c
,OA,OB,OC兩兩互相垂直,H為△ABC的垂心,試用
a
,
b
,
c
表示
OH

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為△ABC所在平面內(nèi)的一點,且滿足(
OB
-
OC
)•(
OB
+
OC
)•(
OB
+
OC
-2
OA
)=0,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為△ABC所在平面內(nèi)一點,滿足|
OA
|2+|
BC
|2=|
OB
|2+|
CA
|2=|
OC
|2+|
AB
|2,則點O是△ABC的
 
 心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年蘇教版高中數(shù)學(xué)必修4 2.5向量的應(yīng)用練習(xí)卷(解析版) 題型:選擇題

已知O為△ABC所在平面內(nèi)一點,滿足

,則點O是△ABC的(    )

A.外心                   B.內(nèi)心                  C.垂心              D.重心

 

查看答案和解析>>

同步練習(xí)冊答案