【題目】關(guān)于的方程有兩個不等實根,則實數(shù)的取值范圍是__________

【答案】

【解析】顯然是方程的一個根,

時,分離常數(shù)可得,設(shè),則,設(shè),則上單調(diào)遞增,在上單調(diào)遞減, ,所以恒成立, 上單調(diào)遞減,在上單調(diào)遞減,并且時, 并且時, 并且時,

時有一個零點

綜上可得: 時有兩個零點.

點晴:本題考查函數(shù)導數(shù)與單調(diào)性.確定零點的個數(shù)問題:可利用數(shù)形結(jié)合的辦法判斷交點個數(shù),如果函數(shù)較為復雜,可結(jié)合導數(shù)知識確定極值點和單調(diào)區(qū)間從而確定其大致圖象.方程的有解問題就是判斷是否存在零點的問題,可參變分離,轉(zhuǎn)化為求函數(shù)的值域問題處理. 恒成立問題以及可轉(zhuǎn)化為恒成立問題的問題,往往可利用參變分離的方法,轉(zhuǎn)化為求函數(shù)最值處理.也可構(gòu)造新函數(shù)然后利用導數(shù)來求解.注意利用數(shù)形結(jié)合的數(shù)學思想方法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】下列各組函數(shù)中,表示同一函數(shù)的是( )
A.
與g(x)=x﹣1
B.f(x)=2|x|與
C.

D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= sin2x+2cos2x+m(0≤x≤ ).
(1)若函數(shù)f(x)的最大值為6,求常數(shù)m的值;
(2)若函數(shù)f(x)有兩個零點x1和x2 , 求m的取值范圍,并求x1和x2的值;
(3)在(1)的條件下,若g(x)=(t﹣1)f(x)﹣ (t≥2),討論函數(shù)g(x)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從高一年級學生中隨機抽取部分學生,將他們的模塊測試成績分成6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計,得到如圖所示的頻率分布直方圖.已知高一年級共有學生600名,據(jù)此估計,該模塊測試成績不少于60分的學生人數(shù)為(

A.588
B.480
C.450
D.120

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為評估兩套促銷活動方案(方案1運作費用為5元/件;方案2的運作費用為2元/件),在某地區(qū)部分營銷網(wǎng)點進行試點(每個試點網(wǎng)點只采用一種促銷活動方案),運作一年后,對比該地區(qū)上一年度的銷售情況,制作相應(yīng)的等高條形圖如圖所示.

(1)請根據(jù)等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷活動方案(不必說明理由);

(2)已知該公司產(chǎn)品的成本為10元/件(未包括促銷活動運作費用),為制定本年度該地區(qū)的產(chǎn)品銷售價格,統(tǒng)計上一年度的8組售價(單位:元/件,整數(shù))和銷量(單位:件)()如下表所示:

售價

33

35

37

39

41

43

45

47

銷量

840

800

740

695

640

580

525

460

①請根據(jù)下列數(shù)據(jù)計算相應(yīng)的相關(guān)指數(shù),并根據(jù)計算結(jié)果,選擇合適的回歸模型進行擬合;

②根據(jù)所選回歸模型,分析售價定為多少時?利潤可以達到最大.

49428.74

11512.43

175.26

124650

(附:相關(guān)指數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若不等式x2+2ax+1≥0對于一切x∈(0, ]成立,則a的最小值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知中心在原點,離心率為的橢圓的一個焦點為圓 的圓心.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)是橢圓上一點,過作兩條斜率之積為的直線, ,當直線, 都與圓相切時,求的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 ,左焦點是.

(1)若左焦點與橢圓的短軸的兩個端點是正三角形的三個頂點,點在橢圓上.求橢圓的方程;

(2)過原點且斜率為的直線與(1)中的橢圓交于不同的兩點,設(shè),求四邊形的面積取得最大值時直線的方程;

(3)過左焦點的直線交橢圓兩點,直線交直線于點,其中是常數(shù),設(shè), ,計算的值(用的代數(shù)式表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (為常數(shù), 為自然對數(shù)的底數(shù)).

(Ⅰ)當時,討論函數(shù)在區(qū)間上極值點的個數(shù);

(Ⅱ)當, 時,對任意的都有成立,求正實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案