已知函數(shù)f(x)=x2+(2a-8)x,不等式f(x)≤5的解集是{x|-1≤x≤5}.
(1)求實數(shù)a的值;
(2)f(x)≥m2-4m-9對于x∈R恒成立,求實數(shù)m的取值范圍.
分析:(1)由函數(shù)f(x)=x2+(2a-8)x,不等式f(x)≤5的解集是{x|-1≤x≤5},知x=-1,x=5是方程x2+(2a-8)x-5=0的兩個實數(shù)根,由此能求出實數(shù)a.
(2)由f(x)=x2-4x=(x-2)2-4≥-4,f(x)≥m2-4m-9對于x∈R恒成立,知-4≥m2-4m-9,由此能求出實數(shù)m的取值范圍.
解答:解:(1)∵函數(shù)f(x)=x2+(2a-8)x,不等式f(x)≤5的解集是{x|-1≤x≤5},
∴x=-1,x=5是方程x2+(2a-8)x-5=0的兩個實數(shù)根,
所以-1+5=8-2a,
解得a=2.
(2)∵a=2,∴f(x)=x2-4x=(x-2)2-4≥-4,
因為f(x)≥m2-4m-9對于x∈R恒成立,
所以-4≥m2-4m-9,
即m2-4m-5≤0,
解得-1≤m≤5,
故實數(shù)m的取值范圍是{m|-1≤m≤5}.
點評:本題考查實數(shù)值及滿足條件的實數(shù)的取值范圍的求法,解題時要認真審題,仔細解答,注意等價轉化思想的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案