已知f(x)是單調(diào)減函數(shù),若將方程f(x)=x與f(x)=f-1(x)的解分別稱為函數(shù)f(x)的不動(dòng)點(diǎn)與穩(wěn)定點(diǎn).則x是f(x)的不動(dòng)點(diǎn)”是“x是f(x)的穩(wěn)定點(diǎn)”的


  1. A.
    充要條件
  2. B.
    充分不必要條件
  3. C.
    必要不充分條件
  4. D.
    既不充分也不必要條件
B
分析:欲判斷”x是f(x)的不動(dòng)點(diǎn)”是“x是f(x)的穩(wěn)定點(diǎn)”的什么條件,只須從兩個(gè)方面考慮:一方面:若x是f(x)的不動(dòng)點(diǎn),看能不能推出“x是f(x)的穩(wěn)定點(diǎn)“;另一方面:”x是f(x)的穩(wěn)定點(diǎn)“能不能推出“x是f(x)的不動(dòng)點(diǎn)“.
解答:一方面:若x是f(x)的不動(dòng)點(diǎn),
則f(x)=x,即函數(shù)y=f(x)與直線y=x的交點(diǎn)的橫坐標(biāo)為x,
因?yàn)樵瘮?shù)與反函數(shù)的圖象一定要關(guān)于直線y=x對(duì)稱,
故反函數(shù)的圖象一定要過函數(shù)y=f(x)與直線y=x的橫坐標(biāo)為x交點(diǎn),
即f(x)=f-1(x)的解是x,
故”x是f(x)的不動(dòng)點(diǎn)?“x是f(x)的穩(wěn)定點(diǎn)“;
另一方面:x是f(x)的穩(wěn)定點(diǎn),
即f(x)=f-1(x),即函數(shù)y=f(x)與y=f-1(x)的交點(diǎn)的橫坐標(biāo)為x,
因?yàn)樵瘮?shù)與反函數(shù)的圖象的交點(diǎn)不一定在直線y=x上,
故原函數(shù)的圖象不一定要過函數(shù)y=f(x)與反函數(shù)的圖象的交點(diǎn),
即x不一定是方程f(x)=f-1(x)的解
故”x是f(x)的穩(wěn)定點(diǎn)“不能?”x是f(x)的不動(dòng)點(diǎn)“
則x“是f(x)的不動(dòng)點(diǎn)”是“x是f(x)的穩(wěn)定點(diǎn)”的“充分不必要條件.
故選B.
點(diǎn)評(píng):本題主要考查了充要條件及互為反函數(shù)的兩個(gè)函數(shù)圖象的對(duì)稱關(guān)系,本題容易錯(cuò)在:”原函數(shù)與反函數(shù)的圖象的交點(diǎn)一定在y=x上“,原函數(shù)與反函數(shù)的圖象的交點(diǎn)不一定在y=x上,如果交點(diǎn)只有1個(gè):那么一定在Y=X上,因?yàn)樵瘮?shù)與反函數(shù)的圖象一定要對(duì)稱,如果交點(diǎn)有2個(gè):那么原函數(shù)與反函數(shù)的圖象完全可以在直線y=x兩側(cè),這樣也原函數(shù)與反函數(shù)的圖象也是對(duì)稱的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

18、已知f(x)是單調(diào)減函數(shù),若將方程f(x)=x與f(x)=f-1(x)的解分別稱為函數(shù)f(x)的不動(dòng)點(diǎn)與穩(wěn)定點(diǎn).則x是f(x)的不動(dòng)點(diǎn)”是“x是f(x)的穩(wěn)定點(diǎn)”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)是定義在(-1,1)上的奇函數(shù),
①已知f(x)是單調(diào)減函數(shù),求不等式f(1-a)+f(1-a2)<0的解;
②已知f(x)在區(qū)間[0,1)上是減函數(shù),證明:f(x)是單調(diào)減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:盧灣區(qū)一模 題型:單選題

已知f(x)是單調(diào)減函數(shù),若將方程f(x)=x與f(x)=f-1(x)的解分別稱為函數(shù)f(x)的不動(dòng)點(diǎn)與穩(wěn)定點(diǎn).則x是f(x)的不動(dòng)點(diǎn)”是“x是f(x)的穩(wěn)定點(diǎn)”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年湖北省宜昌市高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

函數(shù)f(x)是定義在(-1,1)上的奇函數(shù),
①已知f(x)是單調(diào)減函數(shù),求不等式f(1-a)+f(1-a2)<0的解;
②已知f(x)在區(qū)間[0,1)上是減函數(shù),證明:f(x)是單調(diào)減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市盧灣區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:選擇題

已知f(x)是單調(diào)減函數(shù),若將方程f(x)=x與f(x)=f-1(x)的解分別稱為函數(shù)f(x)的不動(dòng)點(diǎn)與穩(wěn)定點(diǎn).則x是f(x)的不動(dòng)點(diǎn)”是“x是f(x)的穩(wěn)定點(diǎn)”的( )
A.充要條件
B.充分不必要條件
C.必要不充分條件
D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案