對?a,b∈R,運算“?”、“⊕”定義為:a?b=,則下列各式中恒成立的是( )
①(sinx?cosx)+(sinx⊕cosx)=sinx+cosx,
②(2x?x2)-(2x⊕x2)=2x-x2,
③(sinx?cosx)•(sinx⊕cosx)=sinx•cosx,
④(2x⊕x2)-(2x?x2)=2x-x2
A.①②③④
B.①②③
C.①③
D.②④
【答案】分析:結(jié)合新定義,驗算①②③④,即可判斷正確選項.
解答:解:由題意可知:①(sinx?cosx)+(sinx⊕cosx)=sinx+cosx.③(sinx?cosx)•(sinx⊕cosx)=sinx•cosx,加法與乘法滿足交換律,正確;
②(2x?x2)-(2x⊕x2)=2x-x2,④(2x⊕x2)-(2x?x2)=2x-x2不恒成立,
故選C.
點評:本題是基礎(chǔ)題,考查新定義的應用,考查發(fā)現(xiàn)問題解決問題的能力,常考題型.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

對?a,b∈R,運算“?”、“⊕”定義為:a?b=
a(a≥b)
b(a<b)
,a⊕b=
a(a<b)
b(a≥b)
,則下列各式中恒成立的是( 。
①(sinx?cosx)+(sinx⊕cosx)=sinx+cosx,
②(2x?x2)-(2x⊕x2)=2x-x2,
③(sinx?cosx)•(sinx⊕cosx)=sinx•cosx,
④(2x⊕x2)-(2x?x2)=2x-x2
A、①②③④B、①②③
C、①③D、②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對?a、b∈R,運算“⊕”、“?”定義為a⊕b=
a,a<b
b,a≥b
,a?b=
a,a≥b
b,a<b
,則下列各式恒成立的是( 。
①a?b+a⊕b=a+b;
②a?b-a⊕b=a-b;
③[a?b]•[a⊕b]=a•b
④[a?b]÷[a⊕b]=a÷b.
A、①④B、②③C、①③D、②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對?a、b∈R,運算“?”、“?”定義為:a?b=
a(a<b)
b(a≥b)
,a?b=
a(a≥b)
b(a<b)
,則下列各式其中不恒成立的是( 。
(1)a?b+a?b=a+b (2)a?b-a?b=a-b  (3)[a?b]?[a?b]=a?b  (4)[a?b]÷[a?b]=a÷b.
A、(1)、(3)
B、(2)、(4)
C、(1)、(2)、(3)
D、(1)、(2)、(3)、(4)

查看答案和解析>>

科目:高中數(shù)學 來源:2011年吉林省吉林一中高三沖刺數(shù)學試卷1(文科)(解析版) 題型:選擇題

對?a,b∈R,運算“?”、“⊕”定義為:a?b=,則下列各式中恒成立的是( )
①(sinx?cosx)+(sinx⊕cosx)=sinx+cosx,
②(2x?x2)-(2x⊕x2)=2x-x2
③(sinx?cosx)•(sinx⊕cosx)=sinx•cosx,
④(2x⊕x2)-(2x?x2)=2x-x2
A.①②③④
B.①②③
C.①③
D.②④

查看答案和解析>>

同步練習冊答案