解:(1)∵f(x)=x
2+bx+c為偶函數(shù),故f(-x)=f(x),即有(-x)2+b(-x)+c=x
2+bx+c,解得b=0.
由因?yàn)辄c(diǎn)A(x,y)在函數(shù)f(x)的圖象上,且點(diǎn)B(x,y
2+1)在g(x)=f(x
2+c)的圖象上,所以c=1,所以f(x)=x
2+1
(2)解:g(x)=f(x
2+1)=(x
2+1)
2+1=x
4+2x
2+2.
F(x)=g(x)-λf(x)=x
4+(2-λ)x
2+(2-λ),F(xiàn)(x
1)-F(x
2)=(x
1+x
2)(x
1-x
2)[x
12+x
22+(2-λ)]
由題設(shè)當(dāng)x
1<x
2<
時(shí),(x
1+x
2)(x
1-x
2)>0,x
12+x
22+(2-λ)>
+
+2-λ=3-λ,
則3-λ≥0,λ≤3;
當(dāng)
<x
1<x
2<0時(shí),(x
1+x
2)(x
1-x
2)>0,x
12+x
22+(2-λ)>
+
+2-λ=3-λ,
則3-λ≥0,λ≥3故λ=3.
分析:利用偶函數(shù)的定義列出恒成立的等式,求出b的值;再點(diǎn)A(x,y)在函數(shù)f(x)的圖象上,且點(diǎn)B(x,y
2+1)在g(x)=f(x
2+c)的圖象上,求出b,c的值;
(2)由f(x)求g(x),再求F(x)解析式,求F(x
1)-F(x
2)的表達(dá)式,最后要變形為因式相乘的形式;根據(jù)單調(diào)性得出這個(gè)式子的正負(fù),從而得出λ的范圍,由兩個(gè)范圍取交集可得λ的值.
點(diǎn)評(píng):解決函數(shù)的奇偶性問題,一般利用奇函數(shù)、偶函數(shù)的定義找關(guān)系;注意具有奇偶性的函數(shù)的定義域關(guān)于原點(diǎn)對稱;求參數(shù)的值,用函數(shù)的單調(diào)性定義求解,屬于定義的逆用,知單調(diào)性來判斷差的正負(fù).