直角坐標(biāo)系xOy中,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的方程為ρ=4cosθ,直線l的方程為(t為參數(shù)),直線l與曲線C的公共點為T.
(1)求點T的極坐標(biāo);
(2)過點T作直線l',l'被曲線C截得的線段長為2,求直線l'的極坐標(biāo)方程.
【答案】分析:(1)先將曲線C的極坐標(biāo)方程化成直角坐標(biāo)方程,再將直線的參數(shù)方程代入直角坐標(biāo)方程,然后求出交點T的直角坐標(biāo),最后化成極坐標(biāo)即可.
(2)設(shè)直線l'的方程,由(1)得曲線C是以(2,0)為圓心的圓,且圓心到直線l'的距離為.利用圓的弦長公式結(jié)合點到直線的距離列出等式,求出K值,得直線l'的方程,最后將其化成極坐標(biāo)方程即可.
解答:解:(1)曲線C的直角坐標(biāo)方程為x2-4x+y2=0.                   ….(2分)
代入上式并整理得
解得.∴點T的坐標(biāo)為.                        ….(4分)
其極坐標(biāo)為…(5分)
(2)設(shè)直線l'的方程為. ….(7分)
由(Ⅰ)得曲線C是以(2,0)為圓心的圓,且圓心到直線l'的距離為
則,.解得k=0,或
直線l'的方程為,或.                   ….(9分)
其極坐標(biāo)方程為(ρ∈R).…(10分)
點評:本題主要考查了簡單曲線的極坐標(biāo)方程,以及直線的參數(shù)方程等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知以O(shè)為圓心的圓與直線l:y=mx+(3-4m),(m∈R)恒有公共點,且要求使圓O的面積最。
(1)寫出圓O的方程;
(2)圓O與x軸相交于A、B兩點,圓內(nèi)動點P使|
PA
|
、|
PO
|
、|
PB
|
成等比數(shù)列,求
PA
PB
的范圍;
(3)已知定點Q(-4,3),直線l與圓O交于M、N兩點,試判斷
QM
QN
×tan∠MQN
是否有最大值,若存在求出最大值,并求出此時直線l的方程,若不存在,給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知點A(0,2)、B(1,1),直線l 經(jīng)過點B且與線段OA相交.則直線 l 傾斜角α的取值范圍是
( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,P為直線y=-x-2上一點,Q為函數(shù)f(x)=
2x
(x>0)的圖象上一點,則線段PQ長的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,我把由兩條射線AE,BF和以AB為直徑的半圓所組成的圖形叫作圖形C(注:不含AB線段).已知A(-1,0),B(1,0),AE∥BF,且半圓與y軸的交點D在射線AE的反向延長線上.
(1)求兩條射線AE,BF所在直線的距離;
(2)當(dāng)一次函數(shù)y=x+b的圖象與圖形C恰好只有一個公共點時,寫出b的取值范圍;當(dāng)一次函數(shù)y=x+b的圖象與圖形C恰好只有兩個公共點時,寫出b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,不等式組
1≤x+y≤3
-1≤x-y≤1
表示圖形的面積等于( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案