分析 根據(jù)拋物線的方程求得焦點(diǎn)坐標(biāo),根據(jù)直線的傾斜角求得直線方程,代入拋物線方程,利用韋達(dá)定理求得x1+x2=$\frac{10}{3}$,由拋物線的性質(zhì)可知丨AB丨=p+x1+x2=$\frac{16}{3}$,利用點(diǎn)到直線的距離公式求得O到直線y=$\sqrt{3}$(x-1)的距離d,根據(jù)三角形的面積公式S=$\frac{1}{2}$•丨AB丨•d,即可求得則△OAB的面積.
解答 解:拋物線C:y2=4x的焦點(diǎn)(1,0),設(shè)A(x1,y1),B(x2,y2),
∴F且傾斜角為60°的直線y=$\sqrt{3}$(x-1),
∴$\left\{\begin{array}{l}{y=\sqrt{3}(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,整理得:3x2-10x+2=0,
由韋達(dá)定理可知:x1+x2=$\frac{10}{3}$,
由拋物線的性質(zhì)可知:丨AB丨=p+x1+x2=$\frac{16}{3}$,
點(diǎn)O到直線y=$\sqrt{3}$(x-1)的距離d,d=$\frac{丨\sqrt{3}丨}{\sqrt{1+(\sqrt{3})^{2}}}$=$\frac{\sqrt{3}}{2}$,
∴則△OAB的面積S,S=$\frac{1}{2}$•丨AB丨•d=$\frac{1}{2}$•$\frac{16}{3}$•$\frac{\sqrt{3}}{2}$=$\frac{4\sqrt{3}}{3}$,
故答案為:$\frac{4\sqrt{3}}{3}$.
點(diǎn)評(píng) 本題考查拋物線的性質(zhì),直線與拋物線的位置關(guān)系,考查韋達(dá)定理,點(diǎn)到直線的距離公式及三角形的面積公式,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=4x-5 | B. | y=3x-1 | C. | y=3x-2 | D. | y=4x-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i | B. | -i | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
單價(jià)x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com