【題目】若函數(shù)滿足:在區(qū)間內(nèi)有且僅有一個實(shí)數(shù),使得成立,則稱函數(shù)具有性質(zhì)M

判斷函數(shù)是否具有性質(zhì)M,說明理由;

若函數(shù)具有性質(zhì)M,求實(shí)數(shù)a的取值范圍;

若函數(shù)具有性質(zhì)M,求實(shí)數(shù)m的取值范圍.

【答案】(1)具有;(2);(3).

【解析】

(1)驗(yàn)證上是否有唯一解即可.

(2)令可得,依據(jù)定義有,結(jié)合可得實(shí)數(shù)的取值范圍.

(3)構(gòu)建新函數(shù),根據(jù)上有唯一解可以得到,解不等式組可得實(shí)數(shù)的取值范圍.

(1),可得,故函數(shù)具有性質(zhì);

(2)因?yàn)楹瘮?shù))具有性質(zhì)

,即,所以的取值范圍是;

(3)依題意,若函數(shù)具有性質(zhì),

即方程上有且只有一個實(shí)根.

設(shè),故上有且只有一個零點(diǎn),

,解得

②若,解得;

③若,解得;

④若,無解

綜上所述,若函數(shù)具有性質(zhì),實(shí)數(shù)的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣ x2﹣aln(x+1)(a>0),g(x)=ex﹣x﹣1,曲線y=f(x)與y=g(x)在原點(diǎn)處的公共的切線.
(1)若x=0為函數(shù)f(x)的極大值點(diǎn),求f(x)的單調(diào)區(qū)間(用a表示);
(2)若x≥0,g(x)≥f(x)+ x2 , 求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校自主招生一次面試成績的莖葉圖和頻率分布直方圖均受到了不同程度的損壞,其可見部分信息如下,據(jù)此解答下列問題:

1)求參加此次高校自主招生面試的總?cè)藬?shù)面試成績的中位數(shù)及分?jǐn)?shù)在內(nèi)的人數(shù);

2)若從面試成績在內(nèi)的學(xué)生中任選兩人進(jìn)行隨機(jī)復(fù)查求恰好有一人分?jǐn)?shù)在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某重點(diǎn)中學(xué)將全部高一學(xué)生分成兩個成績相當(dāng)(成績的均值、方差都相同)的級部, 級部采用傳統(tǒng)形式的教學(xué)方式, 級部采用新型的基于信息化的自主學(xué)習(xí)教學(xué)方式.為了解教學(xué)效果,期末考試后分別從兩個級部中各隨機(jī)抽取30名學(xué)生的數(shù)學(xué)成績進(jìn)行統(tǒng)計(jì),做出莖葉圖如下,記成績不低于127分者為“優(yōu)秀”.

1級部樣本的30個個體中隨機(jī)抽取1個,求抽出的為“優(yōu)秀”的概率;

2由以上數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有的把握認(rèn)為“優(yōu)秀”與教學(xué)方式有關(guān).

附表

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校自主招生一次面試成績的莖葉圖和頻率分布直方圖均受到了不同程度的損壞,其可見部分信息如下,據(jù)此解答下列問題:

1)求參加此次高校自主招生面試的總?cè)藬?shù),面試成績的中位數(shù)及分?jǐn)?shù)在內(nèi)的人數(shù)

2)若從面試成績在內(nèi)的學(xué)生中任選兩人進(jìn)行隨機(jī)復(fù)查,求恰好有一人分?jǐn)?shù)在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市有一條東西走向的公路,現(xiàn)欲經(jīng)過公路上的處鋪設(shè)一條南北走向的公路.在施工過程中發(fā)現(xiàn)在處的正北1百米的處有一漢代古跡.為了保護(hù)古跡,該市決定以為圓心, 1百米為半徑設(shè)立一個圓形保護(hù)區(qū).為了連通公路,欲再新建一條公路,點(diǎn) 分別在公路上,且求與圓相切.

(1)當(dāng)處2百米時,求的長;

(2)當(dāng)公路長最短時,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是實(shí)數(shù),函數(shù)

(1)求證:函數(shù)不是奇函數(shù);

(2)當(dāng)時,解關(guān)于的不等式

(3)求函數(shù)的值域(用表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是正方體的平面展開圖,在這個正方體中

(1)BMED平行 (2)CNBE是異面直線

(3)CNBM60° (4)DM與BN垂直

以上四個命題中,正確命題的序號是(

A. (1)(2)(3) B. (2)(4) C. (3)(4) D. (2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的左、右焦點(diǎn)分別為 , ,其離心率為 ,短軸端點(diǎn)與焦點(diǎn)構(gòu)成四邊形的面積為 .

(1)求橢圓 的方程;

(2)若過點(diǎn) 的直線 與橢圓 交于不同的兩點(diǎn) 、 為坐標(biāo)原點(diǎn),當(dāng) 時,試求直線 的方程.

查看答案和解析>>

同步練習(xí)冊答案