【題目】依法納稅是每個公民應(yīng)盡的義務(wù),個人取得的所得應(yīng)依照《中華人民共和國個人所得稅法》向國家繳納個人所得稅(簡稱個稅).201911日起,個稅稅額根據(jù)應(yīng)納稅所得額、稅率和速算扣除數(shù)確定,計算公式為:

個稅稅額=應(yīng)納稅所得額×稅率-速算扣除數(shù).

應(yīng)納稅所得額的計算公式為:

應(yīng)納稅所得額=綜合所得收入額-免征額-專項扣除-專項附加扣除-依法確定的其他扣除.

其中免征額為每年60000元,稅率與速算扣除數(shù)見下表:

級數(shù)

全年應(yīng)納稅所得額所在區(qū)間

稅率(

速算扣除數(shù)

1

3

0

2

10

2520

3

20

16920

4

25

31920

5

30

52920

6

35

85920

7

45

181920

備注:

專項扣除包括基本養(yǎng)老保險、基本醫(yī)療保險、失業(yè)保險等社會保險費和住房公積金。

專項附加扣除包括子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息或者住房租金、贍養(yǎng)老人等支出。

其他扣除是指除上述免征額、專項扣除、專項附加扣除之外,由國務(wù)院決定以扣除方式減少納稅的優(yōu)惠政策規(guī)定的費用。

某人全年綜合所得收入額為160000元,假定繳納的基本養(yǎng)老保險、基本醫(yī)療保險、失業(yè)保險等社會保險費和住房公積金占綜合所得收入額的比例分別是,,,專項附加扣除是24000元,依法確定其他扣除是0元,那么他全年應(yīng)繳納綜合所得個稅____元.

【答案】1880.

【解析】

根據(jù)題意求出應(yīng)納稅所得額,再根據(jù)公式求出個稅稅額即可.

解:由已知應(yīng)納稅所得額,

則個稅稅額

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)40名數(shù)學(xué)教師,按年齡從小到大編號為1,2,…40,F(xiàn)從中任意選取6人分成兩組分配到A,B兩所學(xué)校從事支教工作,其中三名編號較小的教師在一組,三名編號較大的教師在另一組,那么編號為8,12,28的數(shù)學(xué)教師同時入選并被分配到同一所學(xué)校的方法種數(shù)是

A. 220 B. 440 C. 255 D. 510

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知無窮數(shù)列的各項都是正數(shù),其前項和為,且滿足:,,其中,常數(shù)

1)求證:是一個定值;

2)若數(shù)列是一個周期數(shù)列(存在正整數(shù),使得對任意,都有成立,則稱為周期數(shù)列,為它的一個周期),求該數(shù)列的最小周期;

3)若數(shù)列是各項均為有理數(shù)的等差數(shù)列,),問:數(shù)列中的所有項是否都是數(shù)列中的項?若是,請說明理由;若不是,請舉出反例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集,關(guān)于的不等式)的解集為.

1)求集合;

2)設(shè)集合,若 中有且只有三個元素,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與橢圓相交于點M0,1),N0,-1),且橢圓的離心率為.

1)求的值和橢圓C的方程;

2)過點M的直線交圓O和橢圓C分別于AB兩點.

①若,求直線的方程;

②設(shè)直線NA的斜率為,直線NB的斜率為,問:是否為定值? 如果是,求出定值;如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且與雙曲線有相同的焦點.

1)求橢圓的方程;

2)直線與橢圓相交于兩點,點滿足,點,若直線斜率為,求面積的最大值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xOy中,動點P與定點的距離和它到定直線的距離之比是,設(shè)動點P的軌跡為E.

(1)求動點P的軌跡E的方程;

(2)設(shè)過F的直線交軌跡E的弦為AB,過原點的直線交軌跡E的弦為CD,若,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓 的長軸,長為4,過橢圓的右焦點作斜率為)的直線交橢圓于、兩點,直線的斜率之積為.

(1)求橢圓的方程;

(2)已知直線,直線,分別與相交于兩點,設(shè)為線段的中點,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是的中點.

(1)設(shè)P是上的一點,且AP⊥BE,求∠CBP的大。

(2)當AB=3,AD=2時,求二面角E-AG-C的大小.

查看答案和解析>>

同步練習(xí)冊答案