16.已知函數(shù)f(x)=ax3+bx2+cx(a≠0)是定義在R上的奇函數(shù),且x=-1時,函數(shù)取極值1.
(Ⅰ)求a,b,c的值;
(Ⅱ)已知函數(shù)y=f(x)在[m,2m](m>0)上的最小值為-$\frac{11}{4}$m,求m的值;
(Ⅲ)求證:曲線y=f(x)上不存在兩個不同的點A,B,使過A,B兩點的切線都垂直于直線AB.

分析 (Ⅰ)欲求f(x)的解析式,只需找到關于a,b,c的三個等式,求出a,b,c的值,根據(jù)函數(shù)的奇偶性可得到一個含等式,根據(jù)x=-1時,取得極值1,可知函數(shù)在x=-1時,導數(shù)等于0,且x=-1時,函數(shù)值等于1,又可得到兩個含a,b,c的等式,三個等式聯(lián)立,解出a,b,c即可;
(Ⅱ)求出函數(shù)的導數(shù),通過討論m的范圍,求出函數(shù)的單調區(qū)間,從而求出函數(shù)的最小值,求出m的值即可;
(Ⅲ)先假設存在兩個不同的點A、B,使過A、B的切線都垂直于AB,則切線斜率與AB斜率互為負倒數(shù),又因為函數(shù)在A,B點處的切線斜率時函數(shù)在該點處的導數(shù),就可得到含A,B點的坐標的方程,解方程,若方程有解,則假設成立,若方程無解,則假設不成立.

解答 解:(Ⅰ)∵f(x)=ax3+bx2+cx(a≠0)是定義R上的奇函數(shù)
∴b=0,
∴f(x)=ax3+cx,∴f′(x)=3ax2+c
依題意有f′(-1)=0且f(-1)=1
即 $\left\{\begin{array}{l}{3a+c=0}\\{-a-c=1}\end{array}\right.$,解得,a=$\frac{1}{2}$,c=-$\frac{3}{2}$;
(Ⅱ)f′(x)=$\frac{3}{2}$(x-1)(x+1),
(1)2m≤1時,即0<m≤$\frac{1}{2}$時,f′(x)<0,
f(x)在[m,2m]遞減,
∴f(x)min=f(2m)=4m2-3m=-$\frac{11}{4}$m,解得:m=$\frac{1}{4}$;
(2)$\frac{1}{2}$<m≤1時,x∈(m,1),f′(x)<0,x∈(1,2m),f′(x)>0,
∴f(x)min=f(1)=-1=-$\frac{11}{4}$m,解得:m=$\frac{4}{11}$;
(3)m>1時,f′(x)>0,f(x)在[m,2m]遞增,
∴f(x)min=f(m)=$\frac{{m}^{2}}{2}$-$\frac{3}{2}$m=-$\frac{11}{4}$m,無解,
綜上,m=$\frac{1}{4}$或$\frac{4}{11}$;
(Ⅲ)假定存在A(x1,y1),B(x2,y2)兩點,
則有KAB=$\frac{1}{2}$(x13+x1x2+x23)-$\frac{3}{2}$f′(x)=$\frac{3}{2}$x2-$\frac{3}{2}$,
依題意f′(x1)=f′(x2)=$\frac{3}{2}$x12-$\frac{3}{2}$=$\frac{3}{2}$x22-$\frac{3}{2}$且x1≠x2
∴x1=-x2,kAB=$\frac{1}{2}$x12-$\frac{3}{2}$,
又KAB-f′(x1)=-1得($\frac{1}{2}$x12-$\frac{3}{2}$)-$\frac{3}{2}$(x12-1)=-1
化簡得x14-4x12+$\frac{13}{3}$=0,△<0,無解,
∴假設不成立,故不存在.

點評 本題主要考查了函數(shù)導數(shù)與函數(shù)切線斜率之間的關系,屬于導數(shù)的常規(guī)題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.若一個冪函數(shù)f(x)圖象過$(2,\frac{1}{2})$點,則$f(\frac{1}{2})$=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知角α終邊過點P(4,-3),則下列各式中正確的是(  )
A.sinα=$\frac{3}{5}$B.cosα=-$\frac{4}{5}$C.tanα=-$\frac{3}{4}$D.tanα=-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.點P(x,y)與定點F$(3\sqrt{3},0)$的距離和它到直線$l:x=4\sqrt{3}$的距離的比是常數(shù)$\frac{{\sqrt{3}}}{2}$,
(Ⅰ)求點P的軌跡方程;
(Ⅱ)若直線m與P的軌跡交于不同的兩點B、C,當線段BC的中點為M(4,2)時,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知正項數(shù)列{an}的前n項和為Sn,且滿足a1=2,anan+1=2(Sn+1)(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足b1=1,bn=$\frac{1}{{a}_{n}\sqrt{{a}_{n-1}}+{a}_{n-1}\sqrt{{a}_{n}}}$(n≥2,n∈N*),數(shù)列{bn}前n項和為Tn;
(3)若數(shù)列{cn}滿足lgc1=$\frac{1}{3}$,lgcn=$\frac{{a}_{n-1}}{{3}^{n}}$(n≥2,n∈N*),試問是否存在正整數(shù)p,q,(其中1<p<q),使c1,cp,cq成等比數(shù)列?若存在,求出所有滿足條件的數(shù)組(p,q),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.長方體ABCD-A1B1C1D1中,AB=BC=4,AA1=8,E是CC1的中點,O是下底面正方形ABCD的中心.
(1)求二面角C1-A1B1-O的大。ńY果用反三角函數(shù)值表示)
(2)求異面直線A1B1與EO所成角的大小(結果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知集合M={a,b,c},N={d,e},則從集合M到N可以建立不同的映射個數(shù)為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.某年孝感高中校園歌手大賽后,甲、乙、丙、丁四名同學猜測他們之中誰能獲獎.
甲說:“如果我能獲獎,那么乙也能獲獎.”
乙說:“如果我能獲獎,那么丙也能獲獎.”
丙說:“如果丁沒獲獎,那么我也不能獲獎.”實際上,他們之中只有一個人沒有獲獎,并且甲、乙、丙說的話都是真的.那么沒能獲獎的同學是甲.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.關于x方程sinx+$\sqrt{3}$cosx+k=0(k∈R)在(0,2π)內有兩個相異的實數(shù)解α,β,則 α+β的值為$\frac{π}{3}$或$\frac{4π}{3}$.

查看答案和解析>>

同步練習冊答案