已知橢圓上一點到兩個焦點之間距離的和為,其中一個焦點的坐標(biāo)為,則橢圓的離心率為          .

 

【答案】

.

【解析】

試題分析:設(shè)橢圓的長軸長為,焦距為,則,,故該橢圓的離心率為

.

考點:橢圓的離心率

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在坐標(biāo)原點,焦點在x軸上,焦距為6
3
,且橢圓上一點到兩個焦點的距離之和為12,則橢圓的方程為
x2
36
+
y2
9
=1
x2
36
+
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
y2
a2
+
x2
b2
=1(a
>b>0)的離心率為
2
2
,且橢圓上一點到兩個焦點的距離之和為2
2
.斜率為k(k≠0)的直線l過橢圓的上焦點且與橢圓相交于P,Q兩點,線段PQ的垂直平分線與y軸相交于點M(0,m).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求m的取值范圍.
(3)試用m表示△MPQ的面積S,并求面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的兩個焦點分別為F1(0,-8),F(xiàn)2(0,8),且橢圓上一點到兩個焦點的距離之和為20,則此橢圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省棗莊市高三上學(xué)期期末檢測理科數(shù)學(xué) 題型:解答題

(本題滿分14分)

已知橢圓>b>的離心率為且橢圓上一點到兩個焦點的距離之和為.斜率為的直線過橢圓的上焦點且與橢圓相交于P,Q兩點,線段PQ的垂直平分線與y軸相交于點M(0,m).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)求m的取值范圍.

(3)試用m表示△MPQ的面積S,并求面積S的最大值.

 

查看答案和解析>>

同步練習(xí)冊答案