已知點(diǎn)(1,)是函數(shù)f(x)=ax(a>0,且a≠1)的圖象上一點(diǎn),等比數(shù)列{an}的前n項(xiàng)和為f(n)-c,數(shù)列{bn}(bn>0)的首項(xiàng)為c,且前n項(xiàng)和Sn滿足Sn-Sn-1(n≥2).

(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;

(2)若數(shù)列{前n項(xiàng)和為Tn,問Tn的最小正整數(shù)n是多少?

答案:
解析:

  解析:(1),

  

  

  又?jǐn)?shù)列成等比數(shù)列,,所以;

  又公比,所以;

  

  又,;

  數(shù)列構(gòu)成一個(gè)首相為1公差為1的等差數(shù)列,,

  當(dāng),;

  ();

  (2)

  ;

  由,滿足的最小正整數(shù)為112.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)(1,
1
3
)
是函數(shù)f(x)=ax(a>0且a≠1)的圖象上一點(diǎn),等比數(shù)列an的前n項(xiàng)和為f(n)-c,數(shù)列bn(bn>0)的首項(xiàng)為c,且前n項(xiàng)和Sn滿足:Sn-Sn-1=
Sn
 + 
Sn-1
(n≥ 2)
.記數(shù)列{
1
bnbn+1
}
前n項(xiàng)和為Tn,
(1)求數(shù)列an和bn的通項(xiàng)公式;
(2)若對(duì)任意正整數(shù)n,當(dāng)m∈[-1,1]時(shí),不等式t2-2mt+
1
2
Tn
恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下命題,其中正確命題序號(hào)為
(1)(3)(5)
(1)(3)(5)

(1)若函數(shù)y=f(x)為偶函數(shù),則函數(shù)y=f (x-1)的圖象關(guān)于直線x=1 對(duì)稱;
(2)“x≠1”是“x2≠1”的充分不必要條件;
(3)函數(shù)y=2lg(x2-2)既是偶函數(shù),又在區(qū)間[2,8]上是增函數(shù);
(4)已知f′(x)是函數(shù)y=f(x)的導(dǎo)函數(shù),若f′(x0)=0,則x0必為函數(shù)的極值點(diǎn);
(5)某城市現(xiàn)有人口a萬人,預(yù)計(jì)年平均增長(zhǎng)率為p.那么該城市第十年年初的人口總數(shù)為a(1+p)9萬人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)(1,
1
3
)
是函數(shù)f(x)=ax(a>0,且a≠1)的圖象上一點(diǎn).等比數(shù)列{an}的前n項(xiàng)和為f(n)-1.?dāng)?shù)列{bn}(bn>0)的首項(xiàng)為1,且前n項(xiàng)和sn滿足sn-sn-1=
sn
+
sn_1
(n≥2)

(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若數(shù)列{
1
bnbn_1
}
的前n項(xiàng)和為Tn,問滿足Tn
1000
2012
的最小正整數(shù)n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省濰坊市三縣2011-2012學(xué)年高二上學(xué)期模塊學(xué)分認(rèn)定檢測(cè)數(shù)學(xué)試題 題型:044

已知點(diǎn)(1,2)是函數(shù)的圖象上一點(diǎn),數(shù)列{an}的前n項(xiàng)和Sn=f(n)-1.

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

(Ⅱ)若,求數(shù)列{anbn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)

設(shè)數(shù)列{an}的各項(xiàng)均為正數(shù),它的前n項(xiàng)和為Snn∈N*),已知點(diǎn)(an,4Sn)在函數(shù)f (x)=x2+2x+1的圖象上.(1)證明{an}是等差數(shù)列,并求an;(2)設(shè)m、k、p∈N*,m+p=2k,求證:;(3)對(duì)于(2)中的命題,對(duì)一般的各項(xiàng)均為正數(shù)的等差數(shù)列還成立嗎?如果成立,請(qǐng)證明你的結(jié)論,如果不成立,請(qǐng)說明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案