已知變量x,y滿足約束條件
x+y≥1
y≤3
x-y≤1
,若z=kx+y的最大值為5,則實(shí)數(shù)k=
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃的應(yīng)用
專題:不等式的解法及應(yīng)用
分析:畫出滿足約束條件
x+y≥1
y≤3
x-y≤1
的平面區(qū)域,然后分析平面區(qū)域里各個(gè)角點(diǎn),進(jìn)一步利用目標(biāo)函數(shù)z=kx+y的最大值為11,判斷目標(biāo)函數(shù)經(jīng)過的點(diǎn),即可求出k的值.
解答: 解:由變量x,y滿足約束條件
x+y≥1
y≤3
x-y≤1
,作出可行域:
∵z=kx+y的最大值為5,即y=-kx+z在y軸上的截距是5,
∴目標(biāo)函數(shù)z=kx+y經(jīng)過
x+y=1
y=3
的交點(diǎn)B(-2,3),
∴5=k×(-2)+3;解得k=-1.
目標(biāo)函數(shù)z=kx+y經(jīng)過
y=3
x-y=1
的交點(diǎn)A(4,3),
∴5=4k+3;解得k=
1
2

故答案為:-1或
1
2
點(diǎn)評(píng):本題考查簡(jiǎn)單的線性規(guī)劃的應(yīng)用,在解決線性規(guī)劃的小題時(shí),常用“角點(diǎn)法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個(gè)角點(diǎn)的坐標(biāo)⇒③將坐標(biāo)逐一代入目標(biāo)函數(shù)⇒④驗(yàn)證,求出最優(yōu)解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(2x-
π
3
)-2sin2x+1.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,滿足
a+c
b
=
sinA-sinB
sinA-sinC

(1)求角C;
(2)求sinA+sinB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)是關(guān)于x的二次函數(shù),且f(-
3
2
+x)=f(-
3
2
-x),f(-
3
2
)=49,其函數(shù)圖象與x軸兩交點(diǎn)間的距離等于7,求二次函數(shù)y=f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且|MD|=
4
5
|PD|

(1)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(2)若直線y=ax-5與曲線C交于A,B兩點(diǎn),且OA⊥OB,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
有相同的焦點(diǎn)F,P是兩曲線的公共點(diǎn),若|PF|=
5
6
p
,則此橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)的定義域?yàn)镽,若對(duì)于給定的正數(shù)k,定義函數(shù)fk(x)=
k,f(x)≤k
f(x),f(x)>k
則當(dāng)函數(shù)f(x)=
1
x
,k=1時(shí),定積分
2
1
4
fk(x)dx的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)在7天內(nèi)每天參加體育鍛煉的時(shí)間(單位:分鐘)用莖葉圖表示如圖,圖中左列表示時(shí)間的十位數(shù),右列表示時(shí)間的個(gè)位數(shù).則這7天該同學(xué)每天參加體育鍛煉時(shí)間(單位:分鐘)的平均數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在半徑為2的圓內(nèi)隨機(jī)地取一點(diǎn)A,以點(diǎn)A為中點(diǎn)做一條弦PQ,求弦PQ長(zhǎng)超過圓內(nèi)接正三角形的邊長(zhǎng)概率是多少( 。
A、
2
3
B、
1
2
C、
1
4
D、
1
3

查看答案和解析>>

同步練習(xí)冊(cè)答案