年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省杭州七校高二第二學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知直線(xiàn)(
)與拋物線(xiàn)
:
和圓
:
都相切,
是
的焦點(diǎn).
(Ⅰ)求與
的值;
(Ⅱ)設(shè)是
上的一動(dòng)點(diǎn),以
為切點(diǎn)作拋物線(xiàn)
的切線(xiàn)
,直線(xiàn)
交
軸于點(diǎn)
,以
、
為鄰邊作平行四邊形
,證明:點(diǎn)
在一條定直線(xiàn)上;
(Ⅲ)在(Ⅱ)的條件下,記點(diǎn)所在的定直線(xiàn)為
, 直線(xiàn)
與
軸交點(diǎn)為
,連接
交拋物線(xiàn)
于
、
兩點(diǎn),求△
的面積
的取值范圍.
【解析】第一問(wèn)中利用圓:
的圓心為
,半徑
.由題設(shè)圓心到直線(xiàn)
的距離
.
即,解得
(
舍去)
設(shè)與拋物線(xiàn)的相切點(diǎn)為
,又
,得
,
.
代入直線(xiàn)方程得:,∴
所以
,
第二問(wèn)中,由(Ⅰ)知拋物線(xiàn)方程為
,焦點(diǎn)
. ………………(2分)
設(shè),由(Ⅰ)知以
為切點(diǎn)的切線(xiàn)
的方程為
.
令,得切線(xiàn)
交
軸的
點(diǎn)坐標(biāo)為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)
在定直線(xiàn)
第三問(wèn)中,設(shè)直線(xiàn),代入
得
結(jié)合韋達(dá)定理得到。
解:(Ⅰ)由已知,圓:
的圓心為
,半徑
.由題設(shè)圓心到直線(xiàn)
的距離
.
即,解得
(
舍去). …………………(2分)
設(shè)與拋物線(xiàn)的相切點(diǎn)為
,又
,得
,
.
代入直線(xiàn)方程得:,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知拋物線(xiàn)方程為
,焦點(diǎn)
. ………………(2分)
設(shè),由(Ⅰ)知以
為切點(diǎn)的切線(xiàn)
的方程為
.
令,得切線(xiàn)
交
軸的
點(diǎn)坐標(biāo)為
所以
,
, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)
在定直線(xiàn)
上.…(2分)
(Ⅲ)設(shè)直線(xiàn),代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面積
范圍是
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com