②
分析:函數(shù)g(x)=kx+b(k,b為常數(shù))是函數(shù)f(x)的一個承托函數(shù),即說明函數(shù)f(x)的圖象恒在函數(shù)g(x)的上方(至多有一個交點),若函數(shù)的值域為R,則顯然不存在承托函數(shù).
解答:函數(shù)g(x)=kx+b(k,b為常數(shù))是函數(shù)f(x)的一個承托函數(shù),即說明函數(shù)f(x)的圖象恒在函數(shù)g(x)的上方(至多有一個交點)
①f(x)=x
3的值域為R,所以不存在函數(shù)g(x)=kx+b,使得函數(shù)f(x)的圖象恒在函數(shù)g(x)的上方,故不存在承托函數(shù);
②f(x)=2
-x>0,所以y=A(A≤0)都是函數(shù)f(x)的承托函數(shù),故②存在承托函數(shù);
③∵
的值域為R,所以不存在函數(shù)g(x)=kx+b,使得函數(shù)f(x)的圖象恒在函數(shù)g(x)的上方,故不存在承托函數(shù);
④求導(dǎo)函數(shù)f′(x)=1+cosx,則f′(x)>0,f(x)單調(diào)遞增,∴f(x)=x+sinx的值域為R,所以不存在函數(shù)g(x)=kx+b,使得函數(shù)f(x)的圖象恒在函數(shù)g(x)的上方,故不存在承托函數(shù);
故答案為:②
點評:本題是新定義題,考查對題意的理解和轉(zhuǎn)化的能力,要說明一個命題是正確的,必須給出證明,對于存在性命題的探討,只需舉例說明即可,對于不正確的命題,舉反例即可,有一定的綜合性.