【題目】為了研究一種昆蟲(chóng)的產(chǎn)卵數(shù)和溫度是否有關(guān),現(xiàn)收集了7組觀測(cè)數(shù)據(jù)列于下表中,并作出了如圖的散點(diǎn)圖.

溫度/

20

22

24

26

28

30

32

產(chǎn)卵數(shù)/個(gè)

6

10

22

26

64

118

310

26

794

358

112

116

2340

3572

其中

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)更適宜作為該昆蟲(chóng)的產(chǎn)卵數(shù)與溫度的回歸方程類(lèi)型?(給出判斷即可,不必說(shuō)明理由).

2)根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;(保留兩位有效數(shù)字)

3)根據(jù)關(guān)于的回歸方程,估計(jì)溫度為33℃時(shí)的產(chǎn)卵數(shù).

(參考數(shù)據(jù):

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為

【答案】1更適宜作為該昆蟲(chóng)的產(chǎn)卵數(shù)與溫度的回歸方程類(lèi)型;(2;(3

【解析】

1)由散點(diǎn)圖中點(diǎn)的位置呈現(xiàn)一種指數(shù)型的增長(zhǎng),則更適宜作為該昆蟲(chóng)的產(chǎn)卵數(shù)與溫度的回歸方程類(lèi)型;

2)將非線性回歸方程,兩邊取對(duì)數(shù)得,變成線性回歸方程,利用線性回歸方程的求法,求解即可;

3)將代入回歸方程,即可得出答案.

1)根據(jù)散點(diǎn)圖判斷,更適宜作為該昆蟲(chóng)的產(chǎn)卵數(shù)與溫度的回歸方程類(lèi)型.

2)由,兩邊取為底的對(duì)數(shù)得

由最小二乘法可得

,故,所以

3)當(dāng)時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年冬奧會(huì)申辦成功,讓中國(guó)冰雪項(xiàng)目迎來(lái)了新的發(fā)展機(jī)會(huì),十四冬作為北京冬奧會(huì)前重要的練兵場(chǎng),對(duì)冰雪運(yùn)動(dòng)產(chǎn)生了不可忽視的帶動(dòng)作用.某校對(duì)冰雪體育社團(tuán)中甲、乙兩人的滑輪、雪合戰(zhàn)、雪地足球、冰尜(ga)、爬犁速降及俯臥式爬犁6個(gè)冬季體育運(yùn)動(dòng)項(xiàng)目進(jìn)行了指標(biāo)測(cè)試(指標(biāo)值滿分為5分,分高者為優(yōu)),根據(jù)測(cè)試情況繪制了如圖所示的指標(biāo)雷達(dá)圖.則下面敘述正確的是(

A.甲的輪滑指標(biāo)高于他的雪地足球指標(biāo)

B.乙的雪地足球指標(biāo)低于甲的冰尜指標(biāo)

C.甲的爬犁速降指標(biāo)高于乙的爬犁速降指標(biāo)

D.乙的俯臥式爬犁指標(biāo)低于甲的雪合戰(zhàn)指標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列說(shuō)法:①在殘差圖中,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域內(nèi),說(shuō)明選用的模型比較合適.②相關(guān)指數(shù)來(lái)刻畫(huà)回歸的效果,值越大,說(shuō)明模型的擬合效果越好.③比較兩個(gè)模型的擬合效果,可以比較殘差平方和的大小,殘差平方和越小的模型,擬合效果越好.其中正確命題的個(gè)數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn),且其右焦點(diǎn)與拋物線的焦點(diǎn)重合.

1)求橢圓的方程;

2)直線經(jīng)過(guò)點(diǎn)與橢圓相交于、兩點(diǎn),與拋物線相交于兩點(diǎn).的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知, .

(Ⅰ)若的必要條件,求實(shí)數(shù)的取值范圍;

(Ⅱ)若,“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時(shí),的單調(diào)區(qū)間和極值;

(2)若直線是曲線的切線,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某校高三年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率統(tǒng)計(jì)表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

15

0.30

29

2

合計(jì)

1

1)求出表中及圖中的值;

2)若該校高三學(xué)生人數(shù)有500人,試估計(jì)該校高三學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間內(nèi)的人數(shù);

3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓與拋物線的準(zhǔn)線交于兩點(diǎn),且

(1)求拋物線的方程;

(2)若直線與曲線交于,兩點(diǎn),且曲線上存在兩點(diǎn),關(guān)于直線對(duì)稱,求實(shí)數(shù)的取值范圍及的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,側(cè)面是邊長(zhǎng)為2的等邊三角形且垂直于底面,,的中點(diǎn).

1)求證:直線平面;

2)點(diǎn)在棱上,且二面角的余弦值為,求直線與底面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案