【題目】在△ABC中,角A,B的對(duì)邊分別為a,b,根據(jù)下列條件解三角形,其中只有一解的為( )
A.a=50,b=30,A=60°B.a=30,b=65,A=30°
C.a=30,b=50,A=30°D.a=30,b=60,A=30°
【答案】AD
【解析】
由已知結(jié)合正弦定理求解sinB,再由正弦函數(shù)的值域及三角形中大邊對(duì)大角分析得答案.
對(duì)于A,由a=50,b=30,A=60°,
利用正弦定理可得:
則sinB,
∵a>b,且A為銳角,∴B有一解,故三角形只有一解;
對(duì)于B,由a=30,b=65,A=30°,
利用正弦定理可得:
則sinB,此三角形無解;
對(duì)于C,由a=30,b=50,A=30°,
利用正弦定理可得:
則sinB,
∵b>a,且A為銳角,則角B有兩解,故三角形有兩解;
對(duì)于D,由a=30,b=60,A=30°,
利用正弦定理可得:,
則sinB=1,B=90°,三角形為直角三角形,僅有一解.
故選:AD
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)的定點(diǎn)到定直線的距離等于,動(dòng)圓過點(diǎn)且與直線相切,記圓心的軌跡為曲線.在曲線上任取一點(diǎn),過作的垂線,垂足為.
(1)求曲線的軌跡方程;
(2)記點(diǎn)到直線的距離為,且,求的取值范圍;
(3)判斷的平分線所在的直線與曲線的交點(diǎn)個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中對(duì)一些特殊的幾何體有特定的稱謂,例如:將底面為直角三角形的直三棱柱稱為塹堵.將一塹堵沿其一頂點(diǎn)與相對(duì)的棱刨開,得到一個(gè)陽馬(底面是長(zhǎng)方形,且有一條側(cè)棱與底面垂直的四棱錐)和一個(gè)鱉臑(四個(gè)面均為直角三角形的四面體).在如圖所示的塹堵中, , , ,則陽馬的外接球的表面積是( )
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/30/1913191114645504/1914064210190336/STEM/70d44ba6321c44a9bcc99e6010bf5643.png]
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,平面多邊形中,AE=ED,AB=BD,且,現(xiàn)沿直線,將折起,得到四棱錐.
(1)求證: ;
(2)若,求PD與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足:對(duì)任意實(shí)數(shù)x,都有f(x)≥x,且當(dāng)x∈(1,3)時(shí),有f(x)≤ (x+2)2成立.
(1)證明:f(2)=2;
(2)若f(-2)=0,求f(x)的表達(dá)式;
(3)設(shè)g(x)=f(x)-x,x∈[0,+∞),若g(x)圖象上的點(diǎn)都位于直線y=的上方,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是定義域?yàn)?/span>的函數(shù)的導(dǎo)函數(shù),,,則的解集為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,圓與軸負(fù)半軸交于點(diǎn),過點(diǎn) 的直線,分別與圓交于,兩點(diǎn).
(1)若,,求△的面積;
(2)過點(diǎn)作圓O的兩條切線,切點(diǎn)分別為E,F(xiàn),求;
(3)若,求證:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,點(diǎn)P是上底面A1B1C1D1內(nèi)一動(dòng)點(diǎn),則三棱錐P-ABC的三視圖的面積之和最大值為( )
A.6B.7C.8D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù),….
(Ⅰ)判斷函數(shù)的單調(diào)性,并說明理由;
(Ⅱ)若,不等式恒成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com