【題目】從分別寫有數(shù)字1,2,3,4,5的5張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,則抽得的第一張卡片上的數(shù)字不大于第二張卡片的概率是( )

A. B. C. D.

【答案】C

【解析】

設(shè)第一張卡片上的數(shù)字為,第二張卡片的數(shù)字為,問題求的是

首先考慮分別寫有數(shù)字1,2,34,55張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,有多少種可能,再求出的可能性有多少種,然后求出.

設(shè)第一張卡片上的數(shù)字為,第二張卡片的數(shù)字為, 分別寫有數(shù)字12,3,4,55張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,共有種情況,

當(dāng)時(shí),可能的情況如下表:

個(gè)數(shù)

1

1,2,3,4,5

5

2

23,4,5

4

3

3,45

3

4

4,5

2

5

5

1

,故本題選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=x+m和圓x2+y2=1交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),若,則實(shí)數(shù)m=(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)當(dāng)時(shí),求不等式的解集;

(2)若不等式的解集為空集,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐(如圖一)的平面展開圖(如圖二)中,四邊形為邊長(zhǎng)等于的正方形,均為正三角形,在三棱錐中:

(Ⅰ)證明:平面平面;

(Ⅱ)若點(diǎn)為棱上一點(diǎn)且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某市高三數(shù)學(xué)復(fù)習(xí)備考情況,該市教研機(jī)構(gòu)組織了一次檢測(cè)考試,并隨機(jī)抽取了部分高三理科學(xué)生數(shù)學(xué)成績(jī)繪制如圖所示的頻率分布直方圖.

(1)根據(jù)頻率分布直方圖,估計(jì)該市此次檢測(cè)理科數(shù)學(xué)的平均成績(jī);(精確到個(gè)位)

(2)研究發(fā)現(xiàn),本次檢測(cè)的理科數(shù)學(xué)成績(jī)近似服從正態(tài)分布約為),按以往的統(tǒng)計(jì)數(shù)據(jù),理科數(shù)學(xué)成績(jī)能達(dá)到自主招生分?jǐn)?shù)要求的同學(xué)約占.

(ⅰ)估計(jì)本次檢測(cè)成績(jī)達(dá)到自主招生分?jǐn)?shù)要求的理科數(shù)學(xué)成績(jī)大約是多少分?(精確到個(gè)位)

(ⅱ)從該市高三理科學(xué)生中隨機(jī)抽取人,記理科數(shù)學(xué)成績(jī)能達(dá)到自主招生分?jǐn)?shù)要求的人數(shù)為,求的分布列及數(shù)學(xué)期望.(說明:表示的概率.參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知焦點(diǎn)在y軸上的橢圓E的中心是原點(diǎn)O,離心率等于,以橢圓E的長(zhǎng)軸和短軸為對(duì)角線的四邊形的周長(zhǎng)為.直線軸交于點(diǎn)P,與橢圓E相交于AB兩個(gè)點(diǎn).

(I)求橢圓E的方程;

(II)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,點(diǎn)P是平面ABCD外一點(diǎn),MPC的中點(diǎn),在DM上取一點(diǎn)G,過GAP的平面交平面BDMGH,HBD上.

1)求證平面BDM

2)若GDM中點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,底面是邊長(zhǎng)為的正三角形,,且分別是,中點(diǎn),則異面直線所成角的余弦值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)若對(duì)任意的,存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案