(一、二級(jí)達(dá)標(biāo)校做)
如圖,在梯形ADBC中,ADBC,AB⊥BC,AB=BC=1,PA⊥平面ABCD,CD⊥PC,PA=
2

(Ⅰ) 證明:平面PAC⊥平面PCD;
(Ⅱ)若E為AD的中點(diǎn),求證:CE平面PAB;
(Ⅲ)求四面體A-FCD的體積.
精英家教網(wǎng)
(I)∵PA⊥平面ABCD,CD?平面ABCD
∴PA⊥CD
又CD⊥PC,PA∩PC=P.
∴CD⊥平面PAC
∵CD?平面PCD
∴平面PAC⊥平面PCD.
(Ⅱ)∵ADBC,AB⊥BC,AB=BC=1,
∴∠BAC=45°,∠CAD=45°,AC=
2

∵CD⊥平面PAC,CA?平面PAC
∴CD⊥CA,
∴Rt△ACD中,AD=
2
AC=2
精英家教網(wǎng)

又∵E為AD的中點(diǎn),
∴四邊形ABCE是正方形,
∴CEAB
∵CE?平面PAB,AB?平面PAB
∴CE平面PAB.
(Ⅲ)設(shè)PC的中點(diǎn)為F,連AF.
在Rt△PAC中,PA=
2
,AC=
2
,PC=2,
∴AF⊥PC,且AF=1,
由(Ⅰ)知:平面PAC⊥平面PCD,
∵平面PAC∩平面PCD=PC
∴AF⊥平面PCD,
在Rt△PCD中,CD=
2
,PC=2,
∴S△PCD=
1
2
CD•PC=
2
,
∴VA-PCD=
1
3
S△PCD•AF=
1
3
2
•1=
2
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(一、二級(jí)達(dá)標(biāo)校做)
如圖,在梯形ADBC中,AD∥BC,AB⊥BC,AB=BC=1,PA⊥平面ABCD,CD⊥PC,PA=
2

(Ⅰ) 證明:平面PAC⊥平面PCD;
(Ⅱ)若E為AD的中點(diǎn),求證:CE∥平面PAB;
(Ⅲ)求四面體A-FCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(一、二級(jí)達(dá)標(biāo)校做)
已知函數(shù)f(x)=2x+
λ2x
(x∈R,λ∈R)

(Ⅰ) 討論函數(shù)的f(x)奇偶性,并說(shuō)明理由;
(Ⅱ)當(dāng)λ=1時(shí),討論方程f(x)=μ(μ∈R)在x∈[-1,1]上實(shí)數(shù)解的個(gè)數(shù)情況,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(一、二級(jí)達(dá)標(biāo)校做)
已知函數(shù)f(x)=2x+
λ
2x
(x∈R,λ∈R)

(Ⅰ) 討論函數(shù)的f(x)奇偶性,并說(shuō)明理由;
(Ⅱ)當(dāng)λ=1時(shí),討論方程f(x)=μ(μ∈R)在x∈[-1,1]上實(shí)數(shù)解的個(gè)數(shù)情況,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省寧德市高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

(一、二級(jí)達(dá)標(biāo)校做)
如圖,在梯形ADBC中,AD∥BC,AB⊥BC,AB=BC=1,PA⊥平面ABCD,CD⊥PC,PA=
(Ⅰ) 證明:平面PAC⊥平面PCD;
(Ⅱ)若E為AD的中點(diǎn),求證:CE∥平面PAB;
(Ⅲ)求四面體A-FCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省寧德市高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

(一、二級(jí)達(dá)標(biāo)校做)
如圖,在梯形ADBC中,AD∥BC,AB⊥BC,AB=BC=1,PA⊥平面ABCD,CD⊥PC,PA=
(Ⅰ) 證明:平面PAC⊥平面PCD;
(Ⅱ)若E為AD的中點(diǎn),求證:CE∥平面PAB;
(Ⅲ)求四面體A-FCD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案