設(shè),曲線y = f(x)在點(diǎn)(2,f(2))處的切線方程為y = x+3.
(1)求f(x)的解析式;
(2)若x∈[2,3]時(shí),f(x)≥bx恒成立,求實(shí)數(shù)b的取值范圍.

解:(1)由條件得f(2)=5,則(2,5)在上,
 
 
(2)x∈[2,3]時(shí),f(x)≥bx恒成立等價(jià)于恒成立,
 x∈[2,3],所以 
 
命題意圖:
切線方程要注意“在點(diǎn)”和“過點(diǎn)”的區(qū)別;恒成立問題,存在性問題一般和最值、值域、單調(diào)性密切相關(guān),當(dāng)不等式兩端都為變量時(shí),一般要先分離變量.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知底角為45°的等腰梯形ABCD,底邊BC長(zhǎng)為7 cm,腰長(zhǎng)為2 cm,當(dāng)一條垂直于底邊BC(垂足為F)的直線l從左至右移動(dòng)(與梯形ABCD有公共點(diǎn))時(shí),直線l把梯形分成兩部分,令BF=x,試寫出左邊部分的面積yx的函數(shù)解析式,并畫出大致圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分) 某汽車運(yùn)輸公司購(gòu)買了一批豪華大客車投入客運(yùn),據(jù)市場(chǎng)分析,每輛客車營(yíng)運(yùn)的總利潤(rùn)y萬元與營(yíng)運(yùn)年數(shù)x(x∈N*)的關(guān)系為y=-x2+18x-36。
(1)每輛客車營(yíng)運(yùn)多少年,可使其營(yíng)運(yùn)總利潤(rùn)最大?
(2)每輛客車營(yíng)運(yùn)多少年,可使其營(yíng)運(yùn)年平均利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在不考慮空氣阻力的條件下,火箭的最大速度m/s和燃料的質(zhì)量kg,火箭(除燃料外)的質(zhì)量kg的函數(shù)關(guān)系是.當(dāng)燃料質(zhì)量是火箭質(zhì)量的多少倍時(shí),火箭的最大速度可達(dá)12km/s?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知對(duì)于任意實(shí)數(shù),函數(shù)滿足.若方程有2009個(gè)實(shí)數(shù)解,則這2009個(gè)實(shí)數(shù)解之和為
A  0   B 1   C   D 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)f(x)是(-∞,+∞)上的奇函數(shù),f(x+2)=-f(x),當(dāng)0≤x≤1時(shí),f(x)=x,則f(7 5)等于(    )
A.0.5B.-0.5C. 1.5D.-1.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)某商場(chǎng)預(yù)計(jì)2009年1月份起前x個(gè)月,顧客對(duì)某種商品的需求總量p(x)(單位:件)與x的關(guān)系近似地滿足p(x)=x(x+1)(39-2x),(x∈N*,且x≤12).該商品第x月的進(jìn)貨單價(jià)q(x)(單位:元)與x的近似關(guān)系是q(x)=150+2x.(x∈N*,且x≤12).(1)寫出今年第x月的需求量f(x)件與x的函數(shù)關(guān)系式;(2)該商品每件的售價(jià)為185元,若不計(jì)其他費(fèi)用且每月都能滿足市場(chǎng)需求,試問商場(chǎng)2009年第幾月份銷售該商品的月利潤(rùn)最大,最大月利潤(rùn)為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)滿足:①是偶函數(shù);②在上為增函數(shù)。若,且,則的大小關(guān)系是(  )
A.B.
C.D.的大小關(guān)系不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知定義在復(fù)數(shù)集上的函數(shù)滿足,則(   )
A.B. C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案