一個圓柱形圓木的底面半徑為1m,長為10m,將此圓木沿軸所在的平面剖成兩個部分.現要把其中一個部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形(如圖所示,其中O為圓心,在半圓上),設,木梁的體積為V(單位:m3),表面積為S(單位:m2).
(1)求V關于θ的函數表達式;
(2)求的值,使體積V最大;
(3)問當木梁的體積V最大時,其表面積S是否也最大?請說明理由.
(1);(2);(3)是.
解析試題分析:(1)本題求直四棱柱的體積,關鍵是求底面面積,我們要用底面半徑1和表示出等腰梯形的上底和高,從圖形中可知高為,而,因此面積易求,體積也可得出;(2)我們在(1)中求出,這里的最大值可利用導數知識求解,求出,解出方程在上的解,然后考察在解的兩邊的正負性,確定是最大值點,實質上對應用題來講,導數值為0的那個唯一點就是要求的極值點);(3),上(2)我們可能把木梁的表面積用表示出來,,由于在體積中出現,因此我們可求的最大值,這里可不用導數來求,因為
,可借助二次函數知識求得最大值,如果這里取最大值時的和取最大值的取值相同,則結論就是肯定的.
試題解析:(1)梯形的面積
=,. 2分
體積. 3分
(2).
令,得,或(舍).
∵,∴. 5分
當時,,為增函數;
當時,,為減函數. 7分
∴當時,體積V最大. 8分
(3)木梁的側面積=,.
=,. 10分
設,.∵,
∴當,即時,最大. 12分
又由(2)知時,取得最大值,
所以時,木梁的表面積S最大. 13分
綜上,當木梁的體積V最大時,其表面積S也最大. 14分
考點:(1)函數解析式;(2)用導數求最值;(3)四棱柱的表面積及其最值.
科目:高中數學 來源: 題型:解答題
已知函數,其中a為常數.
(1)當時,求的最大值;
(2)若在區(qū)間(0,e]上的最大值為,求a的值;
(3)當時,試推斷方程=是否有實數解.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數(e為自然對數的底數).
(1)設曲線處的切線為,若與點(1,0)的距離為,求a的值;
(2)若對于任意實數恒成立,試確定的取值范圍;
(3)當上是否存在極值?若存在,請求出極值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數,.
(1)若曲線在點處的切線平行于軸,求的值;
(2)當時,若對,恒成立,求實數的取值范圍;
(3)設,在(1)的條件下,證明當時,對任意兩個不相等的正數、,有.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設函數.
(1)若,求函數的單調區(qū)間;
(2)若函數在區(qū)間上是減函數,求實數的取值范圍;
(3)過坐標原點作曲線的切線,證明:切點的橫坐標為.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com