【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)詳見解析;(2).

【解析】試題分析:(1)先求函數(shù)的定義域,求導(dǎo)通分后發(fā)現(xiàn)分母是含有參數(shù)的二次函數(shù),根據(jù)其判別式進(jìn)行分類討論,由此求得函數(shù)的單調(diào)區(qū)間.(2)將代入原函數(shù),可將原不等式化簡為恒成立,利用分離常數(shù)法,可將問題轉(zhuǎn)化為切線的斜率來求解.

試題解析:(1)

,判別式為:

①:當(dāng),得

此時(shí),從而

所以上單調(diào)遞增.

②:當(dāng),即,

,得方程的根

(舍去),,

,此時(shí),,得

,得

上單調(diào)遞增,在單調(diào)遞減,

,此時(shí)的對稱軸為,

,

,從而上單調(diào)遞增.

綜上:當(dāng),上單調(diào)遞增;當(dāng),上單調(diào)遞增,單調(diào)遞減.

(2)由題意有恒成立,

,

恒成立,

當(dāng)時(shí),不等式顯然恒成立,

當(dāng)時(shí),,

所以,則,于是

,在上恒成立,

設(shè),

,且兩點(diǎn)在的圖象上,

,

所以,

為所求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地上年度電價(jià)為08元,年用電量為1億千瓦時(shí)本年度計(jì)劃將電價(jià)調(diào)至055元~075元之間,經(jīng)測算,若電價(jià)調(diào)至元,則本年度新增用電量(億千瓦時(shí))與元成反比例又當(dāng)時(shí),

(1)之間的函數(shù)關(guān)系式;

(2)若每千瓦時(shí)電的成本價(jià)為03元,則電價(jià)調(diào)至多少時(shí),本年度電力部門的收益將比上年增加20%?[收益用電量(實(shí)際電價(jià)-成本價(jià))]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng)時(shí),存在使不等式成立,求實(shí)數(shù)的取值范圍;

(Ⅱ)若在區(qū)間上,函數(shù)的圖象恒在直線的下方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家用電器公司生產(chǎn)一新款熱水器,首先每年需要固定投入 200萬元,其次每生產(chǎn)1百臺(tái),需再投入0.9萬元.假設(shè)該公司生產(chǎn)的該款熱水器當(dāng)年能全部售出,但每銷售1百臺(tái)需另付運(yùn)輸費(fèi)0.1萬元.根據(jù)以往的經(jīng)驗(yàn),年銷售總額(萬元)關(guān)于年產(chǎn)量(百臺(tái))的函數(shù)為.

(1)將年利潤表示為年產(chǎn)量的函數(shù);

(2)求該公司生產(chǎn)的該款熱水器的最大年利潤及相應(yīng)的年產(chǎn)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線在平面直角坐標(biāo)系下的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.

(1)求曲線的普通方程及極坐標(biāo)方程;

(2)直線的極坐標(biāo)方程是,射線 與曲線交于點(diǎn)與直線交于點(diǎn),求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著移動(dòng)互聯(lián)網(wǎng)時(shí)代的到來,手機(jī)的使用非常普遍,低頭族隨處可見。某校為了解家長和教師對學(xué)生帶手機(jī)進(jìn)校園的態(tài)度,隨機(jī)調(diào)查了100位家長和教師,得到情況如下表:

教師

家長

反對

40

20

支持

20

20

1)是否有95%以上的把握認(rèn)為帶手機(jī)進(jìn)校園與身份有關(guān),并說明理由;

2)把以上頻率當(dāng)概率,隨機(jī)抽取3位教師,記其中反對學(xué)生帶手機(jī)進(jìn)校園的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

附:

PK2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如右圖所示,設(shè)E、F、E1、F1分別是長方體ABCDA1B1C1D1的棱ABCD、A1B1、C1D1的中點(diǎn),則平面EFD1A1與平面BCF1E1的位置關(guān)系是 (  )

A. 平行 B. 相交 C. 異面 D. 不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)發(fā)生里氏8.0級特大地震.地震專家對發(fā)生的余震進(jìn)行了監(jiān)測,記錄的部分?jǐn)?shù)據(jù)如下表:

強(qiáng)度(J)

1.6×1019

3.2×1019

4.5×1019

6.4×1019

震級(里氏)

5.0

5.2

5.3

5.4

注:地震強(qiáng)度是指地震時(shí)釋放的能量.

地震強(qiáng)度(x)和震級(y)的模擬函數(shù)關(guān)系可以選用y=alg x+b(其中a,b為常數(shù)).利用散點(diǎn)圖(如圖)可知a的值等于________.(取lg 2=0.3進(jìn)行計(jì)算)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2014天津,文19】已知函數(shù)

(1) 的單調(diào)區(qū)間和極值;

(2)若對于任意的,都存在,使得,求的取值范圍

查看答案和解析>>

同步練習(xí)冊答案