判斷函數(shù)y=x3+x的單調(diào)性和奇偶性,并證明你的結(jié)論.
考點(diǎn):函數(shù)奇偶性的判斷,函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:易得函數(shù)y=x3+x為R上的單調(diào)遞增函數(shù)和奇函數(shù),求導(dǎo)數(shù)和奇函數(shù)的定義可證.
解答: 解:函數(shù)y=x3+x為R上的單調(diào)遞增函數(shù)和奇函數(shù),下面證明:
求導(dǎo)數(shù)可得y=3x2+1>0,∴y=x3+x為R上的單調(diào)遞增函數(shù),
令f(x)=x3+x,則f(-x)=(-x)3+(-x)=-x3-x=-f(x),
∴y=x3+x為R上的奇函數(shù)
點(diǎn)評:本題考查函數(shù)的單調(diào)性和奇偶性,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知α,β為銳角,
sinα
cosβ
+
sinβ
cosα
=2,則有( 。
A、α+β>
π
2
B、α+β=
π
2
C、α+β<
π
2
D、α+β=
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(4,-3),
b
=(2,2),若
a
+t
b
b
的夾角為45°,求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(a-3)-3<(1+2a)-3,則實(shí)數(shù)a的取值范圍是( 。
A、(-4,+∞)
B、{a|a>-4,a≠3且a≠-
1
2
}
C、(-∞,-4)
D、(-∞,-4)∪(-
1
2
,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 如圖,AB,CD是⊙O的兩條弦,它們相交于P,連結(jié)AD,BD.已知AD=BD=4,PC=6,那么CD的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)(2
7
9
0+(0.1)-1+lg
1
50
-lg2+(
1
7
-1+ log75
(2)已知方程sin(α-3π)=2cos(α-4π),求
sin(π-α)+5cos(2π-α)
2sin(
2
-α)-sin(-α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(30°+a)=
3
2
,則cos(60°-α)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若球的內(nèi)接正方體的對角面面積為4
2
,則該球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)是定義在(-∞,0)∪(0,+∞)上的奇函數(shù),當(dāng)x>0時(shí),f(x)=log2x,
(1)求函數(shù)f(x)解析式并畫出函數(shù)圖象;
(2)請結(jié)合圖象直接寫出不等式xf(x)<0的解集.

查看答案和解析>>

同步練習(xí)冊答案