4.求直線l:3x-y-6=0被圓C:x2+y2-2x-4y=0截得的弦AB的長.

分析 將圓的方程化為標準方程從而確定圓心和半徑.根據(jù)直線與圓截得的弦長公式求出弦AB的長.

解答 解:將圓的方程x2+y2-2x-4y=0化為標準方程,得:
(x-1)2+(y-2)2=5
∴圓心坐標為(1,2),半徑$\sqrt{5}$.
∴圓心到直線的距離d=$\frac{|3-2-6|}{\sqrt{1+9}}$=$\frac{\sqrt{10}}{2}$.
弦AB的長|AB|=2$\sqrt{5-\frac{5}{2}}$=$\sqrt{10}$.

點評 本題考查直線與圓相交的性質,以及弦長公式的應用.屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=|x-2|•(x+1).
(1)將f(x)寫成分段函數(shù),并作出函數(shù)f(x)的圖象;
(2)根據(jù)函數(shù)的圖象寫出函數(shù)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在平面直角坐標系中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=6+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(其中t為參數(shù)).現(xiàn)以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=6cosθ.
(Ⅰ) 寫出直線l普通方程和曲線C的直角坐標方程;
(Ⅱ) 過點M(-1,0)且與直線l平行的直線l1交C于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.y=sin(2x+φ)(0<φ<π)為偶函數(shù),則其單調遞減區(qū)間為[kπ,kπ+$\frac{π}{2}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.某幾何體的三視圖如圖所示,則它表面積是( 。
A.24+$\sqrt{5}$B.24-πC.24+($\sqrt{5}$-1)πD.20+($\sqrt{5}$-1)π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知△ABC內(nèi)接于以原點O為圓心半徑為1的圓,若2$\stackrel{?}{OA}$+3$\stackrel{?}{OB}$+$\sqrt{7}\stackrel{?}{OC}$=0,則∠ACB=( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設關于x的方程x2-mx-1=0有兩個實根α,β,α<β,函數(shù)f(x)=$\frac{2x-m}{{x}^{2}+1}$.若λ,μ均為正實數(shù),則|f($\frac{λα+μβ}{λ+μ}$)-f($\frac{μα+λβ}{λ+μ}$)|( 。﹟α-β|
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知點P(a,b)與點Q(1,0)在直線2x-3y+1=0的兩側,給出下列命題:
①2a-3b+1>0;   ②a≠0時,$\frac{a}$有最小值,無最大值;
③存在正實數(shù)m,使得$\sqrt{{a}^{2}+^{2}}$>m恒成立;
④a>0且a≠1,b>0時,則$\frac{a-1}$的取值范圍是(-∞,-$\frac{1}{3}$)∪($\frac{2}{3}$,+∞).
其中正確的命題是(  )
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設復數(shù)z1,z2在復平面內(nèi)的對應點關于虛軸對稱,z1=2+ai,z1z2=-4,則a=(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步練習冊答案