【題目】已知函數(shù)y=x+ 有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)(0, ]上是減函數(shù),在[ ,+∞)上是增函數(shù).
(1)已知f(x)= ,g(x)=﹣x﹣2a,x∈[0,1],利用上述性質(zhì),求函數(shù)f(x)的單調(diào)區(qū)間和值域.
(2)對于(1)中的函數(shù)f(x)和函數(shù)g(x),若對于任意的x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實數(shù)a的值.

【答案】
(1)解:f(x)= =2x+1+ ﹣8,

設(shè)u=2x+1,x∈[0,1],則1≤u≤3,則y=u+ ﹣8,u∈[1,3],由已知性質(zhì)得,

當(dāng)1≤u≤2,即0≤x≤ 時,f(x)單調(diào)遞減,所以遞減區(qū)間為[0, ]

當(dāng)2≤u≤3,即 ≤x≤1時,f(x)單調(diào)遞增,所以遞增區(qū)間為[ ,1]

由f(0)=﹣3,f( )=﹣4,f(1)=﹣ ,得f(x)的值域為[﹣4,﹣3]


(2)解:由于g(x)=﹣x﹣2a為減函數(shù),故g(x)∈[﹣1﹣2a,﹣2a],x∈[0,1],

由題意,f(x)的值域為g(x)的值域的子集,從而有

所以 a=


【解析】(1)將2x+1看成整體,研究對勾函數(shù)的單調(diào)性從而求出函數(shù)的值域,以及利用復(fù)合函數(shù)的單調(diào)性的性質(zhì)得到該函數(shù)的單調(diào)性;(2)對于任意的x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)可轉(zhuǎn)化成f(x)的值域為g(x)的值域的子集,建立關(guān)系式,解之即可.
【考點精析】本題主要考查了函數(shù)單調(diào)性的性質(zhì)的相關(guān)知識點,需要掌握函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=x2+2bx+c(b,c∈R).
(1)若函數(shù)y=f(x)的零點為﹣1和1,求實數(shù)b,c的值;
(2)若f(x)滿足f(1)=0,且關(guān)于x的方程f(x)+x+b=0的兩個實數(shù)根分別在區(qū)間(﹣3,﹣2),(0,1)內(nèi),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) 個正數(shù) 滿足 ).
(1)當(dāng) 時,證明: ;
(2)當(dāng) 時,不等式 也成立,請你將其推廣到 )個正數(shù) 的情形,歸納出一般性的結(jié)論并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“微信運動”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

(1)若采用樣本估計總體的方式,試估計小王的所有微信好友中每日走路步數(shù)超過5000步的概率;

(2)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評定類型”與“性別”有關(guān)?

附: ,

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=x2+2x.
(Ⅰ)求f(0)的值;
(Ⅱ)求此函數(shù)在R上的解析式;
(Ⅲ)若對任意的t∈R,不等式f(t+1)+f(m﹣2t2)<0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為菱形, 底面 , 上的一點,PE=2EC, 的中點.

(1)證明: 平面;

(2)證明: 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=f(x)在R上可導(dǎo)且滿足不等式xf′(x)+f(x)>0恒成立,且常數(shù)a,b滿足a>b,則下列不等式一定成立的是(
A.af(a)>bf(b)
B.af(b)>bf(a)
C.af(a)<bf(b)
D.af(b)<bf(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐PABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,

EPD的中點,PA=2AB=2.

(1)若FPC的中點,求證PC⊥平面AEF;

(2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x3-3ax2+3bx的圖像與直線12x+y-1=0相切于點(1,-11)。
(1)求a,b的值;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案