如圖,在△ABC中,∠C=90°,BE是角平分線,DE⊥BE交AB于D,圓O是△BDE的外接圓.

(1)求證:AC是圓O的切線;
(2)如果AD=6,AE=6,求BC的長(zhǎng).
(1)見(jiàn)解析(2)4
(1)證明:連OE,∵BE⊥DE,
∴O點(diǎn)為BD的中點(diǎn).
∵OB=OE,∴∠OEB=∠OBE.
∵∠OEC=∠OEB+∠CEB=∠OBE+∠CEB=∠CEB+∠CBE=90°,即OE⊥AC.
又E是AC與圓O的公共點(diǎn),∴AC是圓O的切線.
(2)解:∵AE是圓的切線,∴∠AED=∠ABE.
又∠A共用,∴△ADE∽△AEB,
,即,解得AB=12,
∴圓O的半徑為3.
又∵OE∥BC,∴,即,解得BC=4.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,圓O的直徑AB的延長(zhǎng)線與弦CD的延長(zhǎng)線相交于點(diǎn)P,E為圓O上一點(diǎn),AE=AC,求證:∠PDE=∠POC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如下圖,點(diǎn)D在⊙O的弦AB上移動(dòng),AB=4,連接OD,過(guò)點(diǎn)D作OD的垂線交⊙O于點(diǎn)C,則CD的最大值為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,點(diǎn)D在⊙O的弦AB上移動(dòng),AB=4,連接OD,過(guò)點(diǎn)D作OD的垂線交⊙O于點(diǎn)C,則CD的最大值為         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是圓O的直徑,點(diǎn)C在圓O上,延長(zhǎng)BC到D使BC=CD,過(guò)C作圓O的切線交AD于E.若AB=6,ED=2,求BC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在矩形ABCD中,AB>·AD,E為AD的中點(diǎn),連結(jié)EC,作EF⊥EC,且EF交AB于F,連結(jié)FC.設(shè)=k,是否存在實(shí)數(shù)k,使△AEF、△ECF、△DCE與△BCF都相似?若存在,給出證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,PC與圓O相切于點(diǎn)C,直線PO交圓O于A,B兩點(diǎn),弦CD垂直AB于E,則下面結(jié)論中,錯(cuò)誤的結(jié)論是(  )
A.△BEC∽△DEA
B.∠ACE=∠ACP
C.DE2=OE·EP
D.PC2=PA·AB

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知A(2,1),B(3,2),C(-1,4),則△ABC是(  )
A.直角三角形
B.銳角三角形
C.鈍角三角形
D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖, AB與CD相交于點(diǎn)E, 過(guò)E作BC的平行線與AD的延長(zhǎng)線相交于點(diǎn)P. 已知, PD =" 2DA" =" 2," 則PE =       .

查看答案和解析>>

同步練習(xí)冊(cè)答案