已知是函數(shù)的一個(gè)極值點(diǎn)。
(Ⅰ)求;
(Ⅱ)若直線與函數(shù)的圖象有3個(gè)交點(diǎn),求的取值范圍;
(Ⅲ)設(shè)=()++(6-+2(),,若
=0有兩個(gè)零點(diǎn),且,試探究值的符號(hào)
本題主要考查函數(shù)、導(dǎo)數(shù)、不等式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查
數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想、分類與整合思想。
解:(Ⅰ)因?yàn)?sub>=
所以=0,=5------------------------------------3分
(Ⅱ)由(Ⅰ)知()
===------------------------5分
當(dāng)時(shí),<0,單調(diào)遞減;
當(dāng)或時(shí),>0,單調(diào)遞增.
的極大值為==,
極小值為==,
又時(shí),,時(shí), -----------------7分
結(jié)合圖像可知:當(dāng)且僅當(dāng)時(shí)
直線與函數(shù)的圖象有3個(gè)交點(diǎn)
< ------------------------------------9分
(III)的符號(hào)為正. 證明如下:
因?yàn)?sub>=+()++(6-+2
=有兩個(gè)零點(diǎn),則有
,
兩式相減得
即,
于是
-------------------------11分
①當(dāng)時(shí),令,則,且.
設(shè),
則,
則在上為增函數(shù).而,所以,
即. 又因?yàn)?sub>,所以. ------12分
②當(dāng)時(shí),同理可得:. --------------------------13分
綜上所述:的符號(hào)為正------------------------------------14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆四川達(dá)州第一中學(xué)高二下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知是函數(shù)的一個(gè)極值點(diǎn),其中
(1)求與的關(guān)系式;
(2)求的單調(diào)區(qū)間;
(3)設(shè)函數(shù)函數(shù)g(x)= ;試比較g(x)與的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東師大附中高三12月(第三次)模擬檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)已知是函數(shù)的一個(gè)極值點(diǎn).
(Ⅰ)求的值;
(Ⅱ)當(dāng),時(shí),證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆浙江省寧波萬里國際學(xué)校高二下期中文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知是函數(shù)的一個(gè)極值點(diǎn),其中,
(1)求與的關(guān)系式;
(2)求的單調(diào)區(qū)間;
(3)當(dāng)時(shí),函數(shù)的圖象上任意一點(diǎn)的切線斜率恒大于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題
(本小題滿分15分)
已知是函數(shù)的一個(gè)極值點(diǎn),其中。
(Ⅰ)求與的關(guān)系表達(dá)式;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)當(dāng)時(shí),函數(shù)的圖象上任意一點(diǎn)的切線斜率恒大于,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆廣東省高二下學(xué)期第一次月考理科數(shù)學(xué)試卷 題型:解答題
(本小題滿分14分)
已知是函數(shù)的一個(gè)極值點(diǎn),其中,
(1)求與的關(guān)系式;
(2)求的單調(diào)區(qū)間;
(3)當(dāng)時(shí),函數(shù)的圖象上任意一點(diǎn)的切線斜率恒大于3,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com