已知函數(shù)f(x)=1-2sin2(x+
π
24
)+2sin(x+
π
24
)cos(x+
π
24
).
(I)求f(x)的最小正周期;
(II)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
(Ⅰ)函數(shù)f(x)=1-2sin2(x+
π
24
)+2sin(x+
π
24
)cos(x+
π
24

=
2
cos(2x+
π
12
)•cos
π
4
+cos(2x+
π
12
)sin
π
4

=
2
sin(2x+
π
3

∴函數(shù)的最小正周期為:T=
2
=π.
(Ⅱ)由(Ⅰ)可知f(x)=
2
sin(2x+
π
3

當(dāng)-
π
2
+2kπ≤2x+
π
3
π
2
+2kπ(k∈Z),
即kπ-
12
≤x≤
π
12
+kπ,k∈Z.時(shí)函數(shù)是增函數(shù).
所以函數(shù)的單調(diào)增區(qū)間為:[kπ-
12
,
π
12
+kπ],k∈Z.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),則實(shí)數(shù)x的取值范圍是( 。
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1,x∈Q
0,x∉Q
,則f[f(π)]=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-x
ax
+lnx(a>0)

(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=1時(shí),求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)當(dāng)a=1時(shí),求證對(duì)任意大于1的正整數(shù)n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,則下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+logax(a>0,a≠1),滿足f(9)=3,則f-1(log92)的值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案