精英家教網 > 高中數學 > 題目詳情
拓展探究題
(1)已知兩個圓:①x2+y2=1;②x2+(y-3)2=1,則由①式減去②式可得兩圓的對稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個更一般的命題,而已知命題應成為所推廣命題的一個特例.推廣的命題為______.
(2)平面幾何中有正確命題:“正三角形內任意一點到三邊的距離之和等于定值,大小為邊長的
3
2
倍”,請你寫出此命題在立體幾何中類似的真命題:______.
(1)答:已知兩個圓:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,
則由①式減去②式可得兩圓的對稱軸方程.                                        …(4分)
(2)答:正四面體內任意一點到四個面的距離之和是一個定值,大小為棱長的
6
3
倍.…(8分)
故答案為:已知兩個圓:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,則由①式減去②式可得兩圓的對稱軸方程.
正四面體內任意一點到四個面的距離之和是一個定值,大小為棱長的
6
3
倍.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

拓展探究題
(1)已知兩個圓:①x2+y2=1;②x2+(y-3)2=1,則由①式減去②式可得兩圓的對稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個更一般的命題,而已知命題應成為所推廣命題的一個特例.推廣的命題為
已知兩個圓:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,則由①式減去②式可得兩圓的對稱軸方程
已知兩個圓:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,則由①式減去②式可得兩圓的對稱軸方程

(2)平面幾何中有正確命題:“正三角形內任意一點到三邊的距離之和等于定值,大小為邊長的
3
2
倍”,請你寫出此命題在立體幾何中類似的真命題:
正四面體內任意一點到四個面的距離之和是一個定值,大小為棱長的
6
3
正四面體內任意一點到四個面的距離之和是一個定值,大小為棱長的
6
3

查看答案和解析>>

科目:高中數學 來源:2006-2007學年江蘇省常州高級中學高一(上)期末數學試卷(解析版) 題型:解答題

拓展探究題
(1)已知兩個圓:①x2+y2=1;②x2+(y-3)2=1,則由①式減去②式可得兩圓的對稱軸方程.將上述命題在曲線仍為圓的情況下加以推廣,即要求得到一個更一般的命題,而已知命題應成為所推廣命題的一個特例.推廣的命題為______.
(2)平面幾何中有正確命題:“正三角形內任意一點到三邊的距離之和等于定值,大小為邊長的倍”,請你寫出此命題在立體幾何中類似的真命題:______

查看答案和解析>>

同步練習冊答案