如圖,已知橢圓C的方程為+y2=1,A、B是四條直線x=±2,y=±1所圍成的矩形的兩個頂點.

(1)設(shè)P是橢圓C上任意一點,若=m+n,求證:動點Q(m,n)在定圓上運動,并求出定圓的方程;
(2)若M、N是橢圓C上兩個動點,且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,并說明理由.

(1)見解析(2)△OMN的面積為定值1

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的短半軸長為,動點在直線為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以為直徑且被直線截得的弦長為的圓的方程;
(3)設(shè)是橢圓的右焦點,過點的垂線與以為直徑的圓交于點,
求證:線段的長為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖;.已知橢圓C:的離心率為,以橢圓的左頂點T為圓心作圓T:設(shè)圓T與橢圓C交于點M、N.

(1)求橢圓C的方程;
(2)求的最小值,并求此時圓T的方程;
(3)設(shè)點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與軸交于點RS,O為坐標(biāo)原點. 試問;是否存在使最大的點P,若存在求出P點的坐標(biāo),若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:=1(a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;
(2)當(dāng)△AMN的面積為時,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

拋物線頂點在原點,它的準(zhǔn)線過雙曲線=1(a>0,b>0)的一個焦點,并與雙曲線實軸垂直,已知拋物線與雙曲線的一個交點為,求拋物線與雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓經(jīng)過點,且兩焦點與短軸的兩個端點的連線構(gòu)成一正方形.
(1)求橢圓的方程;
(2)直線與橢圓交于,兩點,若線段的垂直平分線經(jīng)過點,求
為原點)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求滿足下列條件的拋物線的標(biāo)準(zhǔn)方程,并求對應(yīng)拋物線的準(zhǔn)線方程.
(1)過點(-3,2);
(2)焦點在直線x-2y-4=0上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線的焦點在x軸上,兩個頂點間的距離為2,焦點到漸近線的距離為.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)寫出雙曲線的實軸長、虛軸長、焦點坐標(biāo)、離心率、漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,斜率為1的直線過拋物線y2=2px(p>0)的焦點,與拋物線交于兩點A,B,M為拋物線弧AB上的動點.

(1)若|AB|=8,求拋物線的方程;
(2)求的最大值

查看答案和解析>>

同步練習(xí)冊答案