已知變量x,y滿足約束條件
x+y-2≥0
y≤2
x-y≤0
,則z=2x+y的最大值為( 。
A、2B、3C、4D、6
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,利用數(shù)形結合確定z的最大值.
解答: 解:作出不等式組對應的平面區(qū)域如圖:(陰影部分ABC).
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當直線y=-2x+z經(jīng)過點B時,直線y=-2x+z的截距最大,
此時z最大.
y=2
x-y=0
,解得
x=2
y=2
,即B(2,2)
將B(2,2)的坐標代入目標函數(shù)z=2x+y,
得z=2×2+2=6.即z=2x+y的最大值為6.
故選:D.
點評:本題主要考查線性規(guī)劃的應用,結合目標函數(shù)的幾何意義,利用數(shù)形結合的數(shù)學思想是解決此類問題的基本方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若O為坐標原點,
OA
=(1,-1),
AB
=(3,5),則點B的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn為等差數(shù)列{an}的前n項和,若S3=9,S6=36,則S9的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

閱讀下列程序:

如果輸入x=-2,則輸出結果y為( 。
A、0B、-1C、-2D、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

e1
e2
是不共線向量,
a
=k
e1
+
e2
b
=
e1
+k
e2
,若
a
b
a
b
,則實數(shù)k的值為( 。
A、0B、1C、-1D、±1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正四面體ABCD的棱長為1,其中線段AB∥平面α,E,F(xiàn)分別是線段AD和BC的中點,當正四面體繞以AB為軸旋轉時,線段EF在平面α上的射影E1F1長的范圍是( 。
A、[0,
2
2
]
B、[
6
6
,
π
3
]
C、[
6
3
,
2
2
]
D、[
1
2
,
2
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某種程序如圖所示,若該程序運行后輸出的k的值是6,則滿足條件的整數(shù)一共有( 。﹤
A、31B、32C、63D、64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:lnx>0,命題q:ex>1,則命題p是命題q( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ax-1
lnx
(x>0,x,1).
(Ⅰ)當a=1時,求證:x>1時,f(x)>1;
(Ⅱ)已知函數(shù)y=f(x)的增區(qū)間為(0,1)和(1,+∞),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案