10.已知函數(shù)$f(x)=\sqrt{4-{8^x}}$.
(1)求函數(shù)f(x)的定義域和值域;
(2)若f(x)≤1,求x的取值范圍.

分析 (1)由解析式列出不等式,由指數(shù)的運算性質(zhì)求出函數(shù)的定義域,由指數(shù)函數(shù)的性質(zhì)求出值域;
(2)由解析式化簡f(x)≤1,利用對數(shù)函數(shù)的性質(zhì)求出不等式的解集.

解答 解:(1)由題意得,4-8x≥0,
則23x≤22,即3x≤2,解得x≤$\frac{2}{3}$,
所以函數(shù)f(x)的定義域是(-∞,$\frac{2}{3}$];
又4-8x<4,所以$0≤\sqrt{4-{8^x}}<2$,
即函數(shù)f(x)的值域為[0,2).
(2)由f(x)≤1得,$\sqrt{4-{8^x}}≤1$,
則0≤4-8x≤1,即3≤8x≤4,
兩邊取以8為底的對數(shù),解得${log_8}3≤x≤\frac{2}{3}$,
所以不等式的解集是$[lo{g}_{8}3,\frac{2}{3}]$.

點評 本題考查了指數(shù)不等式的解法,指數(shù)運算性質(zhì),函數(shù)的定義域,以及對數(shù)、指數(shù)函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.為了得到函數(shù)$y=cos({2x+\frac{π}{3}})$的圖象,只需將函數(shù)y=sin2x的圖象(  )
A.向右平移$\frac{5π}{6}$個單位B.向右平移$\frac{5π}{12}$個單位
C.向左平移$\frac{5π}{6}$個單位D.向左平移$\frac{5π}{12}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)的定義域是(0,+∞),f'(x)為f(x)的導(dǎo)函數(shù),且滿足f(x)<f'(x),則不等式${e^{-x}}f({{x^2}+x})>{e^{{x^2}-2}}$f(2)的解集是( 。
A.(-∞,2)∪(1,+∞)B.(-2,1)C.(-∞,-1)∪(2,+∞)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)$f(x)=\left\{\begin{array}{l}1-{2^x},x≤0\\{log_2}x,x>0\end{array}\right.$,則f(f(-1))=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若log3x=5,則${log_3}{x^3}$=15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)$f(x)=\sqrt{x+1}+{log_{2016}}(2-x)$的定義域為(  )
A.(-2,1]B.[1,2]C.[-1,2)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)$f(x)=\frac{2}{4^x}-x$,設(shè)a=0.2-2,b=log0.42,c=log43,則有(  )
A.f(a)<f(c)<f(b)B.f(c)<f(b)<f(a)C.f(a)<f(b)<f(c)D.f(b)<f(c)<f(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知等比數(shù)列{an}中,公比$q=\frac{1}{2},{a_3}{a_5}{a_7}=64$,則a4=(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在多面體ABCDEFG中,四邊形ABCD與CDEF是邊長均為a正方形,CF⊥平面ABCD,BG⊥平面ABCD,且AB=2BG=4BH
(1)求證:平面AGH⊥平面EFG
(2)若a=4,求三棱錐G-ADE的體積.

查看答案和解析>>

同步練習(xí)冊答案