【題目】某輛汽車以千米/小時(shí)的速度在高速公路上勻速行駛(考慮到高速公路行車安全要求)時(shí),每小時(shí)的油耗(所需要的汽油量)為升,其中為常數(shù),且

(1)若汽車以千米/小時(shí)的速度行駛時(shí),每小時(shí)的油耗為升,欲使每小時(shí)的油耗不超過升,求的取值范圍;

(2)求該汽車行駛千米的油耗的最小值.

【答案】(1);(2)見解析

【解析】

1)將x=120代入每小時(shí)的油耗,解方程可得k=100,由題意可得,解不等式可得x的范圍;

2)設(shè)該汽車行駛100千米油耗為y升,由題意可得換元令化簡(jiǎn)整理可得t的二次函數(shù),討論t的范圍和對(duì)稱軸的關(guān)系,即可得到所求最小值.

(1)由題意可得當(dāng)時(shí),,

解得,由,

,解得,

,可得,

每小時(shí)的油耗不超過9升,的取值范圍為;

(2)設(shè)該汽車行駛100千米油耗為升,則

,則,

即有,

對(duì)稱軸為,由,可得,

①若,

則當(dāng),即時(shí),;

②若,

則當(dāng),即時(shí),

答:當(dāng),該汽車行駛100千米的油耗的最小值為升;

當(dāng),該汽車行駛100千米的油耗的最小值為升.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),若函數(shù)的導(dǎo)函數(shù)的圖象與軸交于, 兩點(diǎn),其橫坐標(biāo)分別為, ,線段的中點(diǎn)的橫坐標(biāo)為,且, 恰為函數(shù)的零點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(  )

A. 甲、乙二人比賽,甲勝的概率為,則比賽5場(chǎng),甲勝3場(chǎng)

B. 某醫(yī)院治療一種疾病的治愈率為10%,前9個(gè)病人沒有治愈,則第10個(gè)病人一定治愈

C. 隨機(jī)試驗(yàn)的頻率與概率相等

D. 天氣預(yù)報(bào)中,預(yù)報(bào)明天降水概率為90%,是指降水的可能性是90%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】麻團(tuán)又叫煎堆,呈球形,華北地區(qū)稱麻團(tuán),是一種古老的中華傳統(tǒng)特色油炸面食,寓意團(tuán)圓。制作時(shí)以糯米粉團(tuán)炸起,加上芝麻而制成,有些包麻茸、豆沙等餡料,有些沒有。一個(gè)長(zhǎng)方體形狀的紙盒中恰好放入4個(gè)球形的麻團(tuán),它們彼此相切,同時(shí)與長(zhǎng)方體紙盒上下底和側(cè)面均相切,其俯視圖如圖所示,若長(zhǎng)方體紙盒的表面積為576 ,則一個(gè)麻團(tuán)的體積為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:若對(duì)定義域內(nèi)任意x都有a為正常數(shù)),則稱函數(shù)a增函數(shù).

(1)若(0,),試判斷是否為“1距”增函數(shù),并說明理由;

(2)若,Ra增函數(shù),求a的取值范圍;

(3)若,(﹣1,),其中kR,且為“2增函數(shù),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201913日嫦娥四號(hào)探測(cè)器成功實(shí)現(xiàn)人類歷史上首次月球背面軟著陸,我國(guó)航天事業(yè)取得又一重大成就,實(shí)現(xiàn)月球背面軟著陸需要解決的一個(gè)關(guān)鍵技術(shù)問題是地面與探測(cè)器的通訊聯(lián)系.為解決這個(gè)問題,發(fā)射了嫦娥四號(hào)中繼星“鵲橋”,鵲橋沿著圍繞地月拉格朗日點(diǎn)的軌道運(yùn)行.點(diǎn)是平衡點(diǎn),位于地月連線的延長(zhǎng)線上.設(shè)地球質(zhì)量為M,月球質(zhì)量為M,地月距離為R,點(diǎn)到月球的距離為r,根據(jù)牛頓運(yùn)動(dòng)定律和萬有引力定律,r滿足方程:

.

設(shè),由于的值很小,因此在近似計(jì)算中,則r的近似值為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)為且離心率為

1求橢圓方程;

2斜率為的直線過點(diǎn)F,且與橢圓交于兩點(diǎn),P為直線上的一點(diǎn),

為等邊三角形,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABCD中,AD⊥平面PAB,APAB

(1)求證:CDAP;

(2)若CDPD,求證:CD∥平面PAB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四種說法正確的是( )

①若都是定義在上的函數(shù),則“同是奇函數(shù)”是“是偶函數(shù)”的充要條件

②命題”的否定是“ ≤0”

③命題“若x=2,則”的逆命題是“若,則x=2”

④命題:在中,若,則

命題在第一象限是增函數(shù);

為真命題

A. ①②③④ B. ①③ C. ③④ D.

查看答案和解析>>

同步練習(xí)冊(cè)答案