已知集合A={x|x2+px-3=0},集合B={x|x2-qx-p=0|},且A∩B={-1},求2p+q的值.
【答案】分析:根據(jù)交集的定義,由A∩B={-1}得到-1∈A,-1∈B,代入集合即可求出p,q,問題得以解決.
解答:解:∵A∩B={-1}
∴-1∈A,-1∈B即將-1代入x2+px-3=0可得p=-2
將-1代入x2-qx-p=0可得q=-3
∴2p+q=2×(-2)-3=-7,
故2p+q=-7.
點評:本題主要考查了交集的運算,屬于基礎(chǔ)題,也是高考常會考的題型.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

3、已知集合A={x|x>1},集合B={x|x-4≤0},則A∪B等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x<1},B={x|x(x-2)≤0},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x<-2或3<x≤4},B={x||x-1|≤4}
求:
(1)CRA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x≥1},B={x|x>2},則(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•德陽三模)已知集合A={x|
x-2
x+1
≤0},B={y|y=cosx,x∈R}
.則A∩B為( 。

查看答案和解析>>

同步練習冊答案