已知,函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間上的最小值.

(Ⅰ)時,增區(qū)間時,減區(qū)間、增區(qū)間;(Ⅱ).

解析試題分析:(Ⅰ)通過對函數(shù)求導,討論的取值情況從而得到相應的單調(diào)區(qū)間;(Ⅱ)結合第(Ⅰ)問討論的取值情況,判定導函數(shù)是否大于0,從而得到函數(shù)的單調(diào)性,再根據(jù)單調(diào)性得到最小值.最后將所求的最小值以分段函數(shù)的形式表現(xiàn)出來.
試題解析:(Ⅰ)函數(shù)的定義域為.

①當時,,所以
②當時,當.
.                      6分
(Ⅱ)(1)當時,由(Ⅰ)知;
(2) 當時,
①當時,, 由(Ⅰ)知
;
②當時,,由(Ⅰ)知
.
③當時,
由(Ⅰ)知;
綜上所述,
                       13分
考點:1.用導數(shù)判斷函數(shù)的單調(diào)性;2.用函數(shù)的單調(diào)性求最值;3.分類討論思想.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)當時,求函數(shù)上的最大值;
(2)令,若在區(qū)間上不單調(diào),求的取值范圍;
(3)當時,函數(shù)的圖象與軸交于兩點,且,又的導函數(shù).若正常數(shù)滿足條件.證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),函數(shù)
(I)試求f(x)的單調(diào)區(qū)間。
(II)若f(x)在區(qū)間上是單調(diào)遞增函數(shù),試求實數(shù)a的取值范圍:
(III)設數(shù)列是公差為1.首項為l的等差數(shù)列,數(shù)列的前n項和為,求證:當時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,,,.
(Ⅰ)請寫出的表達式(不需證明);
(Ⅱ)求的極小值;
(Ⅲ)設,的最大值為,的最小值為,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)若曲線處的切線相互平行,求的值;
(2)試討論的單調(diào)性;
(3)設,對任意的,均存在,使得.試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(Ⅰ)當時,試討論的單調(diào)性;
(Ⅱ)設,當時,若對任意,存在,使,求實數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(I)當時,求的單調(diào)區(qū)間
(Ⅱ)若不等式有解,求實數(shù)m的取值菹圍;
(Ⅲ)定義:對于函數(shù)在其公共定義域內(nèi)的任意實數(shù),稱的值為兩函數(shù)在處的差值。證明:當時,函數(shù)在其公共定義域內(nèi)的所有差值都大干2。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若直線是曲線的切線,求實數(shù)的值;
(Ⅲ)設,求在區(qū)間上的最小值.(為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若且函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;
(2)如果當時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案